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Abstract: The objective of this study is to create a methodology for accurately 

estimating atmospheric concentrations of PM2.5 and PM10 using Sentinel-5P and other 

open-source remote sensing data from the Google Earth Engine (GEE) platform on a 

monthly basis for June, July and August which are considered as months of non-heating 

season in Croatia, and December, January and February, which, on the other hand, are 

considered as months of the heating season. Furthermore, machine learning algorithms 

were employed in this study to build models that can accurately identify air quality. The 

proposed method uses open-source remote sensing data accessible on the GEE platform, 

with in-situ data from Croatian National Network for Continuous Air Quality Monitoring 

as ground truth data. A common thing for all developed monthly models is that the 

predicted values slightly underestimate the actual ones and appear slightly lower. 

However, all models have shown the general ability to estimate PM2.5 and PM10 levels, 

even in areas without high pollution. All developed models show moderate to high 

correlation between in-situ and estimated PM2.5 and PM10 values, with overall better 

results for PM2.5 than for PM10 concentrations. Regarding PM2.5 models, the model with 

the highest correlation (r = 0.78) is for January. The PM10 model with the highest 

correlation (r = 0.79) is for December. All things considered, developed models can 

effectively detect all PM2.5 and PM10  hotspots. 
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Introduction  

The World Health Organization (WHO) estimates that 99 percent of the world's 

population breaths air that exceeds their guidelines. The cumulative impacts of air 

pollution result in over seven million premature deaths annually, making it a serious 

threat to both human health and the environment (Air pollution, URL 1). 

Since it has been shown that particulate matter (PM) is dangerous to human health 

(Pope III & Dockery, 2006, Anderson et al., 2012; Kim et al., 2015; Kumar et al., 2022), it 

has received significant attention among air pollutants. Based on their aerodynamic 

diameter, airborne particles are classified as coarse (i.e., PM10, particles with an 

aerodynamic diameter less than or equal to 10 μm) or fine (i.e., PM2.5, particles with an 

aerodynamic diameter less than or equal to 2.5 μm).  

Even a 10 g/μm3 increase in PM10 has been shown to increase the chance of 

hospitalization for myocardial infarction. Furthermore, even a few hours of exposure to 

high levels of PM2.5 increases the risk of myocardial infarction in a high-risk group 

(Polichetti et al., 2009). 

Source and chemical composition of PM2.5 and PM10 changes in time and space due 

to various parameters, such as human activity, natural hazards, temperature changes 

and others (Kelly & Fussell, 2012; Clemente et al., 2022; Gautam et al., 2022; Singh et al., 

2022). Therefore, ground stations are commonly used to monitor PM2.5 and PM10 

concentrations but are limited to local areas and are unable to show a broad view (Li et 

al., 2020). That being said, predicting PM2.5 and PM10 atmospheric concentrations over 

larger areas still remains a challenge. However, approaches based on remote sensing 

have lately been developed. Several studies have been done so far on estimating ambient 

PM concentrations (PM2.5 and PM10) using observations from remote sensing satellites 

(Li et al., 2021; Wang et al., 2021; Han et al., 2022). 

Li et al. (2021) provided a review of the two-step methods for estimating PM2.5, 

which first retrieve the aerosol optical depth (AOD) and then estimate PM2.5 from the 

AOD with other supplemental data containing the temporal or spatial variation impact 

on PM2.5. The new approach for estimating PMs comes with the launch of the first 

Copernicus mission on monitoring air quality, Sentinel-5P TROPOMI, which offers daily 

measured ozone (O3), methane (CH4), formaldehyde (HCHO), carbon monoxide (CO), 

nitrogen oxide (NO2), sulphur dioxide (SO2), and aerosol index (AI) in the atmosphere. 

Therefore, Wang et al. (2021) proposed a methodology for PM2.5 and PM10 estimation 

over China using TROPOMI and assimilated datasets, and compared it with the 

traditional approaches which are using AOD data. Their conclusion was that the 

TROPOMI data have great potential in this topic and fix the issue due to the missing AOD 

data. More recently, Han et al. (2022) created spatially continuous maps of PM2.5 

concentrations over Thailand using TROPOMI, elevation, and regulatory grade ground 

station data.  

This research follows a similar approach fusing TROPOMI with multiple open-

source remote sensing data from the Google Earth Engine (GEE) platform to create 

a new method for accurately estimating atmospheric concentrations of PM2.5 and PM10 
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over Croatia for six chosen months. The new approach proposed by this study combines 

air pollution, meteorological and geographical data to create new parameters in order to 

answer the questions of PM2.5 and PM10 composition in Croatia and improve the stability 

and accuracy of developed models. Due to the variation of air pollutants between the 

non-heating and heating seasons (Xiao et al., 2015; Cichowicz et al., 2017) modelling was 

done for June, July, and August which are considered as months of the non-heating 

seasons in Croatia, and December, January, and February, which, on the other hand, are 

considered as months of the heating season. Therefore, the objectives of this study are to 

develop PM2.5 and PM10 models for months of non-heating and heating season in Croatia. 

Furthermore, Random Forest machine learning algorithm, widely used when 

estimating PM2.5 and PM10 (Stafoggia et al., 2019; Shao et al., 2020; Zhao et al., 2020; 

Yang et al., 2020), was employed in this study to build models that can accurately 

identify air quality. The results showed that new approach developed by this study 

estimates PM2.5 and PM10 accurately and, most importantly, can be easily adopted to new 

study areas. 

Materials and methods 

In-situ data. There are 71 ground stations in the Croatian National Network for 

Continuous Air Quality Monitoring (Fig. 1.), but only 31 measure PM2.5  and 54 measure 

PM10 in the atmosphere. 

 

Fig. 1. Croatian National Network for Continuous Air Quality Monitoring 

Source: own study 
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Every hour, automatic stations measure PM2.5 and PM10 as μg/m3. All data is stored 

and publicly accessible on the Croatian National Network for Continuous Air Quality 

Monitoring's official website (Kvaliteta zraka u Republici Hrvatskoj, URL 2). 

PM2.5 and PM10 raw hourly data in Excel format (.xls) were downloaded for all 

stations for June, July, August, and December 2021, as well as for January and February 

2022. Furthermore, some data for the observed time range were missing or invalid, so 

finally data from 20 ground stations were used to estimate PM2.5 for all months and PM10 

from 30 for June, July and August and from 32 for December, January and February. 

Additionally, ground measurements that were too high or too low compared to the rest 

of the dataset were removed. Finally, in-situ data was matched to remote sensing data. 

Sentinel-5P TROPOMI data. The main data used to estimate the PM2.5 and PM10 

values in this study was TROPOMI data from GEE. 

Every day, the Sentinel-5P mission collects data that are used to monitor and 

forecast air quality, climatic conditions, ozone, and ultraviolet radiation levels. It is the 

satellite mission launched on October 13, 2017, carrying the Tropospheric Monitoring 

Instrument (TROPOMI), and it is the first in a series of atmospheric observing systems 

within Copernicus, the European Union's Earth observation program (Kleipool et al., 

2018). 

TROPOMI can observe and monitor air pollution from hotspots such as large cities, 

and industrial areas (Borsdorff et al., 2018; Kaplan & Avdan, 2020). Furthermore, the 

main topic of this study is to explore the potential of Sentinel-5P data to estimate PM2.5 

and PM10, both of which are important in determining air quality. 

Preprocessed L3 TROPOMI data of AI, CO, HCHO, NO2, O3, SO2 were used for 

modelling. CH4 data is missing for all observed periods, and SO2 data is missing for the 

winter months (December 2021, January, and February 2022). Furthermore, due to the 

increased number of cloudy days during the winter months, some CO, HCHO, and NO2 

data are missing. Moreover, due to the reported systematic error for measuring the AI 

until July 2021, AI data from June was also excluded from the modelling. The unit of 

TROPOMI measured CO, HCHO, NO2, O3, and SO2 is mol/m2. 

Based on the fact that TROPOMI captures images over Croatia every day between 

10:00 AM and 1:00 PM CET, the TROPOMI data were matched with the in-situ data for 

the precise hour. 

Assimilated data. Other meteorological and geographical data from the GEE 

platform were used to improve the models. 

Through its Global Forecast System, the National Oceanic and Atmospheric 

Administration (NOAA) provides a dataset consisting of selected model outputs as 

gridded forecast variables (GFS). The 384-hour forecast includes a 3-hour forecast 

interval and a 6-hour temporal resolution (i.e., updated four times daily). It is a coupled 

model composed of an atmospheric model, an ocean model, a land/soil model, and a sea 

ice model, all of which work together to create a realistic representation of 

meteorological conditions (GFS: Global Forecast System 384-Hour Predicted 

Atmosphere Data, URL 3). 
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GFS data used in this study are land surface temperature 2 m above the ground in °C 

(LST), specific humidity 2 m above ground in kg/kg (kilogram of water per kilogram of 

air) (HUM), and U and V component of wind 10 m above ground in m/s (U-WIND and V-

WIND). 

Elevation (DEM) and slope for the ground station locations were extracted from 

NASA’s Shuttle Radar Topography Mission (SRTM) with a spatial resolution of 30 meters 

(Farr et al., 2007). 

Soil pH data at ground level for all stations were extracted from the map made by 

Hengl in 2018 with a resolution of 250 m. 

Parameters. The original TROPOMI parameters and the assimilated datasets are 

shown in Table 1. 

Table 1. Original parameters 

Parameter Description Source Unit 
Temporal 
resolution 

Spatial 
resolution 

AI Aerosol index TROPOMI / daily 1113.2 m 

CO 
Carbon 

monoxide 
TROPOMI mol/m2 daily 1113.2 m 

HCHO Formaldehyde TROPOMI mol/m2 daily 1113.2 m 
NO2 Nitrogen dioxide TROPOMI mol/m2 daily 1113.2 m 
O3 Ozone TROPOMI mol/m2 daily 1113.2 m 

SO2 Sulphur dioxide TROPOMI mol/m2 daily 1113.2 m 

LST 
Land surface 
temperature 

NOAA °C 6 hours 27 890 m 

HUM 
Specific 

humidity 
NOAA kg/kg 6 hours 27 890 m 

U-WIND Eastward wind NOAA m/s 6 hours 27 890 m 
V-WIND Northward wind NOAA m/s 6 hours 27 890 m 

DEM Elevation NASA SRTM m / 30 m 
SLOPE Slope NASA SRTM ° / 30 m 

SOIL_pH Soil pH Hengl 2018 pH*10 / 250 m 

Source: own study  

Using the main data (TROPOMI) and the assimilated data, new parameters for the 

modelling were created to improve the stability of the models (Table 2). 

The parameters listed above were created based on the things they have in common 

(i.e., NO2 and SO2 have the same chemical structure, are both inorganic and react 

similarly). Furthermore, some were created solely as normalized ratios, while others 

were merged based on their source (i.e., WHT is a parameter composed of wind 

components, humidity, and temperature). 
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Table 2. Created parameters 

Parameter 
(NO2+SO2)/(NO2-SO2) 

NO2/SO2 
HCHO/CO 

(CO+HCHO)/CO-HCHO) 

O3/(NO2+SO2+CO) 

AI*(NO2/SO2) 
O3/(NO2/SO2) 

O3/((NO2+SO2)/(NO2-SO2)) 
SQRT(1/(NO2+SO2+O3)) 

(AI+HUM)/(AI-HUM) 
(AI+DEM)/(AI-DEM) 
(CO+NO2)/CO-NO2) 

(CO+O3)/(CO-O3) 
WIND1 
WHT2 

(WHT+AI)/(WHT-AI) 
(WHT+O3)/(WHT-O3) 

(CO+SO2)/(CO-SO2) 
S53 

(S5+WHT)/(S5-WHT) 

(S5+WIND)/(S5-WIND) 

1(U-WIND + V-WIND)/2, 2(((U-WIND + V-WIND)/2)+HUM+LST)/3,  
3(AI+CO+HCHO+NO2+O3+SO2)/6 

Source: own study  

Modelling with Weka. The Waikato Environment for Knowledge Analysis (Weka) 

is a large collection of Java class libraries that implement a wide range of state-of-the-art 

machine learning and data mining algorithms (Witten et al., 1999). 

Weka is open-source software with tools for data preprocessing, classification, 

regression, clustering, association rules, and visualization that is licensed under the GPL 

(General Public License). 

Before modelling, selecting only the best parameters for each model was necessary. 

This was done using Weka's Classifier subset evaluator tool for the Random Forest 

algorithm with a percentage split of 70. Once the best parameters were found, all 

remaining were removed, and the Random Forest classifier was used with data split into 

training and testing portions of 70% and 30%, respectively. 

The Random Forest classifier comprises a group of tree classifiers, each of which is 

generated using a random vector sampled independently from the input vector. Each 

tree casts a unit vote for the most popular class to classify an input vector (Pal, 2005). 

The basic idea behind Random Forest is a simple but powerful one – the wisdom of 

crowds. The Random Forest model works so well because a large number of relatively 
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uncorrelated models (trees) acting as a committee will outperform any of the individual 

constituent models (Understanding Random Forest, URL 4). 

The model was saved once it was developed. All models in this study are created 

using the same procedure as described above. 

The number of instances and parameters used to create each model is shown in 

Table 3 below. 

Table 3. Number of instances used to create each model 

Model Pollutant 
Number of 
instances 

Number of 
parameters 

June PM2.5 350 12 
June PM10 484 5 
July PM2.5 271 4 
July PM10 364 18 

August PM2.5 331 11 
August PM10 459 10 

December PM2.5 178 6 
December PM10 268 6 

January PM2.5 280 7 
January PM10 478 6 

February PM2.5 232 10 
February PM10 363 7 

Source: own study 

Results and discussion 

The monthly PM2.5 and PM10 models were developed, as noted before, using the 

Random Forest algorithm with a 70% split, and are shown in Fig. 2.–7. with their 

correlation coefficient (r), mean absolute error (MAE), and root mean squared error 

(RMSE). 

  

(a) (b) 

Fig. 2. June prediction models for: (a) PM2.5 (b) PM10 

Source: own study 
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(a) (b) 

Fig. 3. July prediction models for: (a) PM2.5 (b) PM10 

Source: own study 

  

(a) (b) 

Fig. 4. August prediction models for: (a) PM2.5 (b) PM10 

Source: own study 

  

(a) (b) 

Fig. 5. December prediction models for: (a) PM2.5 (b) PM10 

Source: own study 
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(a) (b) 

Fig. 6. January prediction models for: (a) PM2.5 (b) PM10 

Source: own study 

  

(a) (b) 

Fig. 7. February prediction models for: (a) PM2.5 (b) PM10 

Source: own study 

All monthly models give moderate to high correlation, with overall better results for 

PM2.5 than for PM10. Regarding PM2.5 models, the one with the lowest correlation is for 

July with r = 0.67 (MAE = 4.12 μg/m3, RMSE = 7.27 μg/m3), and on the contrary, the one 

with the highest correlation is for January with r = 0.78 (MAE = 8.24 μg/m3, RMSE = 

10.18 μg/m3). On the other hand, the PM10 model with the lowest correlation is also the 

one for July with r = 0.51 (MAE = 9.80 μg/m3, RMSE = 15.41 μg/m3), and the highest for 

December with r = 0.79 (MAE = 6.35 μg/m3, RMSE = 7.78 μg/m3). 

The attributes chosen to build PM2.5 and PM10 monthly models can give us a better 

understanding of each exact model. The selected parameters used to develop mentioned 

models and estimate PM2.5 and PM10 monthly values are shown in Table 4. 

What can be noticed is that the PM10 model for July used the highest number of 

parameters to develop, 18 to be exact, and it came out as the one with the lowest overall 

correlation. Furthermore, the PM2.5 model for July used only four parameters, and even 

its accuracy is the lowest among PM2.5 monthly models, it is still better than most of 

those for PM10. The most common number of used parameters ranges from five to 12. 
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Table 4. Parameters used to develop PM2.5 and PM10 monthly models 

Pollutant Month Parameters 

PM2.5 June  
O3, SO2, HUM, U-WIND, DEM, (CO+HCHO)/(CO-HCHO), 

O3/(NO2+SO2+CO), O3/(NO2/SO2), SQRT(1/(NO2+SO2+O3)), 
(CO+O3)/(CO-O3), WIND1, (CO+SO2)/(CO-SO2). 

PM10 June  HUM, SOIL_pH, DEM, SLOPE, SQRT(1/(NO2+SO2+O3)). 
PM2.5 July  SO2, DEM, NO2/SO2, O3/((NO2+SO2)/(NO2-SO2)). 

PM10 July  

HUM, U-WIND, SOIL_pH, DEM, SLOPE, (NO2+SO2)/(NO2-SO2), 
NO2/SO2, AI*(NO2/SO2), O3/(NO2/SO2), O3/((NO2+SO2)/(NO2-

SO2)), (AI+HUM)/(AI-HUM), (AI+DEM)/(AI-DEM), 
(CO+NO2)/(CO-NO2), (CO+O3)/(CO-O3), WIND, 
(WHT2+AI)/(WHT-AI), (WHT+O3)/(WHT-O3), 

(S53+WIND)/(S5-WIND). 

PM2.5 August  

O3, SO2, LST, DEM, SLOPE, (CO+HCHO)/(CO-HCHO), 
O3/(NO2+SO2+CO), O3/((NO2+SO2)/(NO2-SO2)), 
(CO+NO2)/(CO-NO2), (CO+O3)/(CO-O3), WHT, 

(WHT+AI)/(WHT-AI). 

PM10 August  

V-WIND, SOIL_pH, DEM, SLOPE, O3/(NO2+SO2+CO), 
SQRT(1/(NO2+SO2+O3), (CO+NO2)/CO-NO2), 

(WHT+AI)/(WHT-AI), (CO+SO2)/(CO-SO2), (S5+WIND)/(S5-
WIND). 

PM2.5 December  O3, U-WIND, DEM, SLOPE, HCHO/CO, (CO+HCHO)/(CO-HCHO). 
PM10 December  NO2, O3, DEM, SLOPE, (CO+O3)/(CO-O3), (WHT+AI)/(WHT-AI). 

PM2.5 January  
CO, NO2, HUM, SLOPE, HCHO/CO, (CO+NO2)/(CO-NO2), 

(CO+O3)/(CO-O3). 
PM10 January  SOIL_pH, DEM, SLOPE, WIND, WHT, (WHT+O3)/(WHT-O3). 

PM2.5 February  
CO, NO2, O3, LST, HUM, V-WIND, SOIL_pH, (AI+DEM)/(AI-

DEM), WHT, (WHT+O3)/(WHT-O3). 
PM10 February  AI, O3, HUM, SOIL_pH, DEM, SLOPE, (WHT+AI)/(WHT-AI). 

PM2.5 June  
O3, SO2, HUM, U-WIND, DEM, (CO+HCHO)/(CO-HCHO), 

O3/(NO2+SO2+CO), O3/(NO2/SO2), SQRT(1/(NO2+SO2+O3)), 
(CO+O3)/(CO-O3), WIND1, (CO+SO2)/(CO-SO2). 

1(U-WIND + V-WIND)/2, 2(((U-WIND + V-WIND)/2)+HUM+LST)/3, 3(AI+CO+HCHO+NO2+O3+SO2)/6 

Source: own study  

Compared with the study done for China by Wang et al. (2021), our study provides a 

more straightforward approach and uses fewer parameters, still providing satisfactory 

results. Wang et al. (2021) used 30 parameters from various sources (TROPOMI, GEOS-

FP, MODIS, Open Street Map, and GPW) and showed that SO2, NO2, and wind 

components were the most important parameters. On the other hand, Han et al. (2022) 

used only TROPOMI and NASA SRTM elevation data in their study for Thailand. Unlike 

Wang et al. (2021), Han et al. (2022), have shown NO2 and SO2 as the most insignificant 

variables.  

To get a visual insight between the in-situ and predicted data, the PM2.5 and PM10 

monthly interpolation maps were made using minimum curvature spline technique 
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(Fig. 8.–11.). The ground stations used for modelling are indicated as point data on the 

map. 

 

  

(a) (b) 

  

(c) (d) 
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(e) (f) 

Fig. 8. Interpolated monthly PM2.5 concentrations: (a) June from in-situ data (b) June 

from remote sensing data (c) July from in-situ data (d) July from remote sensing data  

(e) August from in-situ data (f) August from remote sensing data. 

Source: own study 

We can easily spot two hotspots for the months of the non-heating season for PM2.5, 

especially in June and July. The first one is located by the sea in north-western part of 

the country, around the urban area of the city Rijeka, and the second one in south-east of 

continental part of the country close to the border. There are only noticeable differences 

between the ground and the predicted data, where the predicted values appear to be 

slightly lower than the actual values (most visible for June). 

 

  

(a) (b) 



FUSING MULTIPLE OPEN-SOURCE REMOTE SENSING DATA TO ESTIMATE  
PM2.5 AND PM10 MONTHLY CONCENTRATIONS IN CROATIA 

 

71 

  

(c) (d) 

  

(e) (f) 

Fig. 9. Interpolated monthly PM2.5 concentrations: (a) December from in-situ data 

(b) December from remote sensing data (c) January from in-situ data (d) January from 

remote sensing data (e) February from in-situ data (f) February from remote sensing data 

Source: own study 

For the months of heating season, it is clearly visible that all the highest PM2.5 values 

are in the east of the country (continental part of Croatia). Wang et al. (2021) observed 

similar seasonal changes and linked them to heating emissions and diverse 

meteorological conditions. The predicted values slightly underestimated the actual ones 

and appeared slightly lower. 
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(a) (b) 

  

(c) (d) 
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(e) (f) 

Fig. 10. Interpolated monthly PM10 concentrations: (a) June from in-situ data (b) June 

from remote sensing data (c) July from in-situ data (d) July from remote sensing data 

(e) August from in-situ data (f) August from remote sensing data 

Source: own study 

The distribution of PM10 in months of non-heating season clearly shows us three 

hotspots (even four for June), all in the northern part of the country, but distributed 

longitudinally (from west to the east). The central hotspot appears around the urban 

area of the capital city, Zagreb, and the one in the far east around the urban area of the 

city of Osijek. Developed models again showed a good performance with ability to find 

mentioned hotspots. 

  

(a) (b) 
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(c) (d) 

  

(e) (f) 

Fig. 11. Interpolated monthly PM10 concentrations: (a) December from in-situ data 

(b) December from remote sensing data (c) January from in-situ data (d) January from 

remote sensing data (e) February from in-situ data (f) February from remote sensing data 

Source: own study 

When looking at the PM10 values in months of the heating season, and those of the 

non-heating, there is not so much change, even though it was expected that the values 

during heating season will be much higher. Several studies (Wang et al., 2021; Kumar 

et al., 2022) connected high PM10 emissions to sandstorms and dry climate, neither of 

which are common in Croatia. There are three hotspots found in the continental part of 

the country, two of them again located around the urban areas of the cities Zagreb and 

Osijek, and the third, between, in the town of Kutina.  
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A common thing for all developed monthly models is that the predicted values 

slightly underestimate the actual ones and appear slightly lower. However, all models 

have shown the general ability to estimate PM2.5 and PM10 levels, even in areas without 

high pollution. Furthermore, all models can effectively detect all PM2.5 and PM10 

hotspots. 

Conclusion 

This study proposed a new approach to estimate ambient concentrations of PM2.5 

and PM10 from TROPOMI and other open-source remote sensing data available in GEE. 

On a monthly time scale, the Random Forest machine learning method was 

successfully used to create  PM2.5 and PM10 models for the Republic of Croatia. All 

monthly models show a moderate to high correlation between in-situ and estimated 

PM2.5 and PM10 values, with overall better results for PM2.5 than for PM10 concentrations. 

Regarding PM2.5 models, the model with the highest correlation (r = 0.78) is for January. 

The PM10 model with the highest correlation (r = 0.79) is for December. 

The spatial distribution of PM2.5 concentrations for months during the heating 

season revealed significant variations in PM2.5 pollution in the continental part of 

Croatia, which motivates the development of regional models and opens a space for new 

research. Observed seasonal changes could be linked to heating emissions and multiple 

geographical and meteorological conditions. Furthermore, the next step would be to 

create seasonal models using the same methodology proposed by this research. The 

advantage of this approach is that it combines multiple parameters from different 

sources in order to answer the challenges in the composition of observed air pollutants 

and that it can be easily adopted in new study areas. Limitations are presented in the 

form of missing data due to weather conditions. 

A common thing for all developed monthly models is that the predicted values 

underestimate the actual ones and appear slightly lower. However, all models have 

shown the general ability to estimate PM2.5 and PM10 levels, even in areas without high 

pollution. Furthermore, all models can effectively detect all PM2.5 and PM10 hotspots.  
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