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Abstract: This study examined land use/land cover (LULC) dynamics in the Garoua-

Boulai artisanal gold mining district, Cameroon, from 2015 to 2024 using Sentinel-2 

imagery, GIS, and statistical analysis. Supervised classification (Maximum Likelihood, 

ArcGIS 10.8) and accuracy assessment (overall accuracy 87–94%; Kappa 0.80–0.87) 

revealed major land transformations. Dense vegetation declined by ~48% and 

agricultural land by ~19%, while bare land expanded by 183%, built-up areas nearly 

tripled, and mine sites increased by 34%.Correlation analysis showed strong negative 

relationships between mine sites and vegetation (r = –0.957) and agriculture (r = –

0.932), and positive relationships with bare land (r = +0.928) and built-up areas (r = 

+0.997). Regression slopes indicated that each hectare of mine expansion corresponded 

to losses of ~12–17 ha of vegetation/agriculture and gains of ~24ha of bare land. 

Although limited to three temporal data points, the high correlations and explanatory 

power (R2) provide compelling evidence of mining-driven land change. These findings 

highlight the urgent need for stronger regulation of artisanal mining, rehabilitation of 

abandoned pits, and integration of remote sensing into land governance to support 

sustainable land management in Cameroon’s mining districts. 
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Introduction 

Natural resources play a vital role in human survival, with land serving as the 

foundation for terrestrial ecosystem services (Fang et al., 2022). However, mineral 

resource exploitation, particularly artisanal and small-scale gold mining (ASGM), has 

become one of the leading drivers of environmental degradation (Ahmad & Pandey, 

2018). Mining activities such as excavation, trenching, and sediment reworking often 

result in deforestation, soil instability, contamination of water bodies, and landscape 

modifications (Sahu & Er, 2011; Mbaya, 2013; Marangoz et al., 2017). The removal of 

overburden exposes arable land to erosion, while abandoned pits and unrehabilitated 

mine sites exacerbate land degradation (Kamga et al., 2020). In addition, ASGM 

frequently leads to flooding, sedimentation, and biodiversity loss (Gadal et al., 2021), 

undermining both ecological and economic functions and threatening agricultural 

sustainability (Basir et al., 2011).  

Accurate information on the extent of land degradation caused by mining is 

essential for policy development and environmental conservation. However, field-based 

data collection for large areas is often limited, costly, and time-consuming (De Jong, 

2015). Remote sensing techniques have therefore emerged as a powerful alternative, 

offering rapid, cost-effective, and spatially comprehensive monitoring capabilities. In 

particular, Sentinel-2 satellites under the Copernicus program provide medium-

resolution multispectral imagery that is well suited for monitoring short and long-term 

environmental impacts of mining (Charou et al., 2010). 

Globally, several studies have demonstrated the utility of remote sensing in 

mapping the impacts of gold mining. For example, Caballero-Espejo et al. (2018) used 

Landsat imagery in the Peruvian Amazon to quantify deforestation linked to ASGM, 

reporting a dramatic rise in forest loss from 292 ha/year between 2003–2006 to 1,915 

ha/year between 2006–2009. In Senegal, Ngom et al. (2020) applied Sentinel-2 and 

Google Earth Engine to detect ASGM sites, while Lameck et al. (2025) integrated remote 

sensing with social surveys in Tanzania’s Singida Region to assess land use/cover 

changes and their socio-economic implications. These examples highlight how remote 

sensing contributes to both environmental monitoring and sustainable land 

management strategies. 

In Cameroon, artisanal gold mining has also been associated with significant 

environmental degradation across several regions. In the Centre Region, Lum-Ndob et al. 

(2024) documented a sharp decline in forest cover in the Eseka mining district from 

98% in 1990 to 34% in 2022, alongside increases in agricultural land and mining camps. 

Similarly, Manga et al. (2018) reported extensive deforestation and bare land expansion 

due to mining activities in the same region. In the Adamawa Region, Tchoua et al. (2024) 

used Sentinel-2 imagery and photogrammetric analysis to show vegetation and soil 

deterioration around Mbale, while in the North, Fuh et al. (2023) combined Landsat 8 

OLI and Digital Elevation Model (DEM) data to monitor land cover changes associated 

with mining in the Borongo-Mborguene gold field. Similarly, Mefomdjo et al. (2024) 
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demonstrated large-scale vegetation loss, soil degradation, and water contamination 

linked to artisanal mining across northern and eastern gold mining regions. 

The East Region, particularly is one of the most affected artisanal gold mining zones. 

Kamga et al. (2020) reported extensive adverse effects of ASGM on agriculture, health, 

and education across Betaré-Oya, Ngoura, and Batouri between 1987 and 2017. More 

recently, Tamfuh et al. (2024) used Sentinel-2 imagery to track land cover changes in 

Bétaré-Oya between 2018 and 2022, finding rapid mining expansion at the expense of 

vegetation cover, though a temporary decline occurred during the COVID-19 pandemic. 

Despite this growing body of research, limited attention has been given to Garoua-

Boulai, another artisanal gold mining district in the East Region. Unlike well-studied 

areas such as Betaré-Oya, Batouri, and Ngoura, the long-term land use and land cover 

dynamics in Garoua-Boulai remain poorly understood. Yet, this district is experiencing 

increasing artisanal mining activity, population influx, and settlement expansion, all of 

which intensify land degradation pressures. Traditional field surveys for monitoring 

these changes are often difficult due to terrain, cost, and time constraints (Ahmad & 

Pandey, 2018), underscoring the need for a rapid and accurate remote sensing-based 

approach. 

This study therefore aims to assess land use and land cover (LULC) dynamics in the 

Garoua-Boulai artisanal gold mining district between 2015 and 2024 using Sentinel-2 

imagery. The specific objectives are to: (i) produce spatial maps of LULC patterns and 

mining expansion, (ii) quantify transitional changes in LULC for the study period 

associated with mining, and (iii) establish the relationship between mining activities and 

land degradation in the district. The findings are expected to advance understanding of 

ASGM impacts on land systems, contributing baseline knowledge that supports 

sustainable development. 

Material and methods 

Description of study area. 

Garoua-Boulai is located in the East Region of Cameroon in the Lom and Djerem 

Division, covering about 2,214 km² (CityPopulation, 2025) and located between 

5°25’0’’N to 6°0’0’’N and14°0’0’’ to 1500’0’’E (Fig. 1). Its location on the Douala–Bangui 

transnational corridor makes it a strategic gateway for trade and migration across the 

sub region (Humanitarian Data Exchange, 2025). Garoua-Boulai lies on the northeastern 

margin of the Congo Basin, within a gently dissected plateau transitioning toward the 

Adamawa highlands. The area belongs to the Lom-Kadey River system, with tributaries 

originating on the eastern Adamawa Plateau and draining southward into gold-bearing 

basins. These rivers sustain riparian gallery forests but are increasingly disturbed by 

artisanal mining (Miles et al., 2006; BRGM, 2024).  

The district has a tropical savanna climate characterized by a rainy season from 

April to November and a dry season from December to March. Mean annual rainfall is 

~1,500-2,000 mm, with average temperatures of 24-25 °C (Climate-Data.org, 2025). The 

relatively high elevation (~1,030 m) results in cooler nights. Ecologically, Garoua-Boulaï 
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belongs to the Northern Congolian forest-savanna mosaic ecoregion, dominated by 

wooded savannas, semi-deciduous forest patches, and perennial grasses interspersed 

with agricultural mosaics (WWF, 2025). The natural vegetation is progressively 

fragmented by logging, smallholder farming, and artisanal gold mining.  

The district lies within the Pan-African Central African Fold Belt, specifically the 

Lom Series, and a Neoproterozoic volcano-sedimentary domain intruded by granitoids 

and transected by gold-bearing shear zones (Vicat & Pouclet, 1995; Toteu et al., 2001). 

Weathering of auriferous quartz veins supplies eluvial and alluvial gold to the Lom–

Kadey drainage network, which underpins widespread artisanal and semi-mechanized 

gold mining (ASGM) in the East Region, including Garoua-Boulai, Betare-Oya, Ngoura, 

and Batouri (BRGM, 2024). 

Garoua-Boulai had about 41,000 inhabitants in 2005 (BUCREP, 2010), but recent 

growth has been driven by cross-border trade and refugee inflows from the Central 

African Republic (CAR). The nearby Gado-Badzere camp alone has hosted more than 

27,000 refugees in recent years (UNHCR, 2023). Population growth, settlement 

expansion, farming, logging, and ASGM have accelerated land-cover conversion, 

intensifying environmental pressures. 

 

Fig. 1. Location map of study area 

Source: Own elaboration 
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The outline of materials and methods used for land use/land cover (LULC) dynamics 

monitoring/mapping using Remote Sensing and GIS techniques are described in the 

flowchart in Fig. 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Flow chart for LULC classification and change detection workflow 

Source: Own elaboration 

LULC classification, mapping and change dynamics. 

Data source and image selection. Sentinel-2 Level-2A images were downloaded 

from the Copernicus Data Space Ecosystem (https://dataspace.copernicus.eu/). To 

maximize temporal comparability and reduce seasonal effects, scenes were selected for 

December of 2015, 2020, and 2024, corresponding to the dry season in the East Region 

of Cameroon when cloud cover is typically lower and vegetation phenology is relatively 

stable as shown on Table 1. Sentinel-2 provides 13 spectral bands as seen on Table 2, 

spanning the visible, near-infrared (NIR), and shortwave infrared (SWIR) regions at 

native spatial resolutions of 10 m (B2, B3, B4, B8), 20 m (B5, B6, B7, B8A, B11, B12), and 

60 m (B1, B9, B10). For each year, all available December scenes with minimal cloud 

contamination over the area of interest (AOI) were screened using the metadata cloud 

percentage and quick-look previews; scenes with evident cloud/shadow over the AOI 
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From copernicus 
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Image Preprocessing 
Layer stacking and 

resampling to 10m spatial 
resolution in SNAP software 

Image Enhancement 
Geometric and Atmospheric 
correction in SNAP software 

Band Compositing 
and Extracting Area 

of Interest 
(ArcGIS 10.8) 

Preparation of Training 
Samples 

(ArcGIS 10.8) 

LULC Classification using 
maximum likelihood classifier 

(ArcGIS 10.8) 

Accuracy Assessment 
(ArcGIS 10.8 & Google Earth 

Pro) 

Change detection  
(ArcGIS 10.8) 

https://dataspace.copernicus.eu/
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were excluded. When multiple acceptable scenes were available within the month, they 

were retained to enable masking and compositing steps that further suppress residual 

cloud/shadow effects. 

Table 1. Characteristics of Sentinel-2 images used for analysis 

Year Satellite Date of image Time Phonological cycle 

2015 Sentinel-2 Level 2A 16/12/2015 09:24:12 Dry Season 

2020 Sentinel-2 Level 2A 24/12/2020 09:23:19 Dry Season 

2024 Sentinel-2 Level 2A 18/12/2024 09:24:11 Dry Season 

Source: Own elaboration 

Table 2. Sentinel 2 bands characteristics 

Sentinel 

2 bands 
Characteristics 

Central wavelength 

(nm) 

Bandwidth 

(nm) 

Spatial 

resolution (m) 

1 Coastal aerosol 442.7 21 60 

2 Blue 492.4 66 10 

3 Green 559.8 36 10 

4 Red 664.6 31 10 

5 Vegetation red edge 740.5 15 20 

6 Vegetation red edge  740.5  15  20  

7 Vegetation red edge  782.8  20  20  

8 NIR  832.8  106  10  

8A Narrow NIR  864.7  21  20  

9 Water vapour  945.1  20  60  

10 SWIR – Cirrus  1373.5  31  60  

11 SWIR  1613.7  91  20  

12 SWIR  2202.4  175  20  

Source: Copernicus Data Space Ecosystem, 2025 

Pre-processing and image enhancement in SNAP. Image pre-processing was 

performed in the Sentinel Application Platform (SNAP, ESA). Because Level-2A products 

are already atmospherically corrected to Bottom-of-Atmosphere (BOA) surface 

reflectance, the workflow focused on quality masking, geometric harmonization, and 

spatial resampling. First, the Scene Classification Layer (SCL) provided with L2A (classes 

for cloud, cloud shadow, vegetation, bare soils, water) and the QA60 mask were used to 

flag clouds (SCL 8–10), shadows (SCL 3), and snow/ice (SCL 11), which were removed 

from further processing. A small morphological dilation (1-2 pixels) was applied to the 

cloud and shadow masks to eliminate edge contamination. All images were checked for 

map projection consistency and reprojected to UTM Zone 33N (WGS-84) where 
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necessary to ensure exact co-registration across years. Since Sentinel-2 bands are 

provided at mixed spatial resolutions, all spectral bands required for classification were 

resampled to 10m using bilinear interpolation (appropriate for continuous reflectance 

data) to create a uniform multi-band stack per year. Prior to export, contrast stretching 

and light histogram normalization were applied to enhance visual interpretability for 

training-sample delineation. 

Band compositing and AOI Extraction. The pre-processed multi-band stacks were 

imported into ArcGIS Desktop 10.8 (ArcMap). A natural-color composite (Bands 4-3-2) 

was used for on-screen interpretation and training-sample placement. The AOI was 

extracted using the clip tool from the toolbox in ArcMap. 

Class scheme and training data in ArcGIS Desktop 10.8. Six land-use/land-cover 

classes were mapped based on local knowledge and visual interpretation: Dense 

vegetation, Agricultural land, Built-up areas, Water bodies, Bare land, and Mining sites 

(active pits, tailings, camps, and associated disturbed ground). To capture within-class 

spectral variability, 150 training samples per class were digitized as polygons 

distributed across the AOI, avoiding transitional edges and known mixed pixels 

according to Sathya & Baby (2019).  

Supervised classification and post-processing. Supervised classification was 

carried out using the Maximum Likelihood Classifier (MLC) in ArcGIS, which assigns 

pixels to the class with the highest posterior probability under the assumption of 

multivariate normality of class signatures. The signature file generated from the curated 

training set was used as the classifier input. Class boundaries were visually inspected 

against the natural-color composite and high-resolution base map tiles; minor manual 

edits were performed where obvious mislabels occurred. 

Area and percentage calculations in ArcGIS 10.8. Area calculations for each year 

were possible from the final classified raster’s summarized attribute tables. Given the 10 

m output resolution, each pixel represents 100 m², equivalent to 0.01 ha. Class area (ha) 

was computed as: 

                                   Area (ha) = Pixel Count × 0.01                                                          (1) 

And percentage cover was calculated by dividing class area by the total mapped area 

and multiplying by 100.  

                                     Percentage Cover =
Class Area

Total mapped area
 × 100                                        (2) 

For transparency and reproducibility, all area statistics were generated using the 

same AOI mask for 2015, 2020, and 2024 to ensure identical denominators across years. 

Accuracy assessment. Classification reliability was evaluated using a stratified 

random sampling design. Independent reference points were generated per class 

(50 points per class), yielding a validation set that was not used for training (Rwanga & 

Ndambuki, 2017). Each reference point was interpreted against time-coincident high-

resolution imagery in Google Earth Pro (December windows ±1-2 months when 

necessary). A confusion matrix (error matrix) was then constructed for each year (2015, 

2020, and 2024), from which the following standard accuracy metrics were derived: 
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Producer’s Accuracy (PA) and User’s Accuracy (UA) for each class, Overall Accuracy 

(OA), along with the Kappa coefficient to measure agreement beyond chance. The 

interpretation of Kappa values followed Landis & Koch (1977), Kappa ≥ 0.81 was treated 

as almost perfect agreement, 0.61-0.80 as substantial, 0.41-0.60 as moderate, and values 

< 0.40 as poor. Accuracy metrics were reported separately for 2015, 2020, and 2024. 

Producer’s accuracy measures errors of omission, which is a measure of how well 

real-world land cover types can be classified.  

𝑃𝑟𝑜𝑑𝑢𝑐𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Number of Correctly Cassified Pixels in each Category

Total Number of Reference Pixels in that Category
 × 100                (3) 

User’s accuracy measures errors of commission, which represents the likelihood of a 

classified pixel matching the land cover type of its corresponding real-world location. 

𝑈𝑠𝑒𝑟′𝑠 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Number of Correctly Classified Pixels in each Category

Number of Correctly classified Pixels in that Category
 × 100                 (4) 

Overall Accuracy is the proportion of correctly classified pixels across all classes 

relative to the total number of validation samples. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
Total Correctly classified Samples

Total Reference Sample
 × 100                                              (5) 

Change detection. Post-classification comparison was used to detect land cover 

transitions between 2015-2020, 2020-2024, and 2015-2024. The cross-tabulation 

method allowed quantification of class-to-class conversions (e.g. dense vegetation to 

bare land, bare land to mining site, dense vegetation to mining site etc.). This approach 

minimizes radiometric inconsistencies by relying on classified maps rather than direct 

image differencing. Transition matrices were generated to capture absolute area 

changes (ha) between land-cover classes for the periods. 

Correlation and regression. 

To evaluate the statistical relationships between land-use/land-cover (LULC) 

classes over time, a correlation and regression analysis was carried out using Microsoft 

Excel 2013. The analysis was based on the area coverage (ha) of each LULC class (Dense 

Vegetation, Agricultural Land, Built-up Areas, Water Bodies, Bare Land, and Mine Sites) 

for the classification years 2015, 2020, and 2024. 

Correlation. The Pearson Product-Moment Correlation Coefficient (r) was 

computed to assess the strength and direction of linear associations between pairs of 

LULC classes. This coefficient ranges from –1 (perfect negative correlation) to +1 

(perfect positive correlation), with values close to 0 indicating weak or no linear 

relationship. The formula applied in Excel was: 

𝑟 =
Ʃ(Xi−X)(Yi−Y)

√(Ʃ(Xi−X)2.Ʃ(Yi−Y)2 )
                                                                                                                 (6) 

Where “Xi” and “Yi” represent the observed values of two LULC classes, and “X” and 

“Y” are their respective means. The resulting correlation matrix allowed identification of 

inverse relationships (e.g., expansion of mining sites versus decline of dense 
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vegetation/agriculture) and direct relationships (e.g., growth of bare land alongside 

mining expansion). 

Regression. In addition, simple linear regression was performed to model the 

dependency of selected LULC classes on mining expansion. Specifically, mine site area 

(independent variable, X) was regressed against dense vegetation, agricultural land, and 

bare land (dependent variables, Y). The regression equation applied in Excel was: 

Y = a + bX                                                                                                                                  (7)                                                                              

Where “Y” is the dependent variable (e.g., vegetation area), “X” is the independent 

variable (mine sites), “a” is the intercept, “b” is the slope (regression coefficient). The 

coefficient of determination (R2) was used to measure the proportion of variation in the 

dependent variable explained by mining expansion. This analysis enabled quantification 

of how strongly mining growth was associated with land degradation trends (loss of 

vegetation and agriculture) and land conversion (increase in bare land and built-up 

areas). 

Results and discussion 

Land use/Land cover classification results. 

The classified maps of 2015, 2020, and 2024 revealed substantial changes in land 

use and land cover (LULC) within the Garoua-Boulai artisanal gold mining district 

(Fig. 3). The corresponding class areas and percentages are summarized in Table 3. 

Table 3. LULC statistics in Garoua-Boulai (2015–2024) 

Year Class Area (ha) Percentage (%) 

2015 

Dense vegetation 30085.13 18.98 

Agricultural Land 106416.1 67.15 

Built-Up Areas 2262.2 1.43 

Water Bodies 207.69 0.13 

Bare Land 16474.76 10.40 

Mine Sites 3049.47 1.92 

2020 

Dense vegetation 25034.47 15.80 

Agricultural Land 97729.91 61.67 

Built-Up Areas 2854.98 1.80 

Water Bodies 260.49 0.16 

Bare Land 29481.19 18.60 

Mine Sites 3121.07 1.97 

2024 

Dense Vegetation 15760.35 9.94 

Agriculture Land 85742.3 54.10 

Built-up Areas 6130.5 3.87 

Water Bodies 125.5 0.08 

Bare Land 46635.42 29.43 

Mine Sites 4088.04 2.58 

Source: Own elaboration 
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(a) (b) 

 

(c) 

Fig. 3. LULC classified maps for Garoua-Boulai (a) 2015, (b) 2020, (c) 2024  

Source: Own elaboration 

In 2015, agricultural land dominated the landscape (106,416.1 ha; 67.15%), 

followed by dense vegetation (30,085.1 ha; 18.98%) and bare land (16,474.8 ha; 

10.40%). Built-up areas, mining sites, and water bodies were relatively minor, 

accounting for less than 2% each (see Fig. 3a). 

By 2020, agricultural land had declined to 97,729.9 ha (61.67%), and dense 

vegetation decreased to 25,034.5 ha (15.80%). Meanwhile, bare land increased sharply 

to 29,481.2 ha (18.60%), while mining sites showed a slight increase to 3,121.1 ha 

(1.97%), see Fig. 3b. 

The 2024 classification shows accelerated land transformation, with agricultural 

land dropping to 85,742.3 ha (54.10%) and dense vegetation declining further to 

15,760.4 ha (9.94%). Bare land expanded dramatically to 46,635.4 ha (29.43%), nearly 

tripling its 2015 extent. Built-up areas doubled from 2,262.2 ha (2015) to 6,130.5 ha 

(2024), while mine sites grew to 4,088.0 ha (2.58%). Water bodies remained minimal 

(<0.2%) throughout the study period (see Fig. 3c). 
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Fig. 4. Trend in LULC in Garoua-Boulai from 2015 to 2024 

Source: Own elaboration 

Figure 4, indicate a clear trajectory of land degradation, marked by the replacement 

of vegetation and agricultural land with bare land, built-up areas, and mining sites in 

2024. The findings align with previous studies in Betare-Oya, East region, Cameron 

(Kamga et al., 2020; Tamfuh et al., 2024), which reported vegetation loss and 

agricultural decline due to artisanal mining expansion. 

Accuracy assessment results. 

The classification reliability was evaluated using independent validation samples 

and confusion matrices (Table 4). Overall accuracies improved across the three 

classification years: 87.69% (2015), 89.23% (2020), and 93.85% (2024). The Kappa 

coefficients were 0.80, 0.81, and 0.87, respectively, indicating substantial to almost 

perfect agreement according to Landis and Koch (1977). 

Producer’s and User’s accuracies varied by class. For example, mine sites had 

relatively low User’s Accuracy in 2015 (50%) and 2020 (50%), reflecting spectral 

confusion with bare land and agricultural fields. However, accuracy improved 

significantly by 2024 (100%). Dense vegetation and agricultural land consistently 

showed high accuracies, reinforcing the reliability of mapped patterns. 

The progressively higher accuracy over time demonstrates the robustness of the 

classification procedure and validates the subsequent change detection and statistical 

analyses. 
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Table 4. Accuracy assessment of LULC classifications (2015–2024) 

Class Name User’s Accuracy (%) Producer’s Accuracy (%) 
2015 

Dense Vegetation 100 54 
Agricultural Land 87 97 

Built-Up Areas 60 100 
Water Bodies 100 67 

Bare Land 100 86 
Mine Sites 50 75 

Overall Accuracy 87.69% 
Kappa Coefficient (Kc) 0.80 

2020 
Dense Vegetation 95 81 
Agricultural Land 92 95 

Built-Up Areas 50 100 
Water Bodies 100 100 

Bare Land 86 71 
Mine Sites 50 100 

Overall Accuracy 89.23 
Kappa Coefficient (Kc) 0.81 

2024 
Dense Vegetation 100 86 
Agricultural Land 94 98 

Built-Up Areas 60 100 
Water Bodies 100 100 

Bare Land 95 83 
Mine Sites 100 100 

Overall Accuracy 93.85 
Kappa Coefficient (Kc) 0.87 

Source: Own elaboration 

Change detection analysis. 

Post-classification comparison was used to quantify land-cover transitions (Table 5). 

From 2015 to 2020, dense vegetation declined by ~5,051 ha, largely converted into 

agriculture (3,758 ha) and bare land (4,383 ha). Agricultural land decreased by ~8,686 

ha, with major conversions to bare land (17,268 ha) and mining sites (1,298 ha). Bare 

land expanded by ~13,006 ha, largely at the expense of vegetation and agriculture. 

The period between 2020 and 2024, dense vegetation lost ~9,274 ha, mainly 

transitioning into bare land (24,305 ha) and agriculture (7,672 ha). Agricultural land 

decreased further by ~12,000 ha, with significant conversions into bare land (20,511 

ha) and mining sites (2,295 ha). Bare land gained ~17,154 ha, confirming accelerated 

degradation. Built-up areas expanded rapidly (+3,276 ha). 

For the overall change transition (2015-2024): Dense vegetation declined by 

~14,325 ha (–47.6%). Agricultural land lost ~20,674 ha (–19.4%). Bare land increased 

by ~30,161 ha (+183%). Built-up areas nearly tripled (+3,868 ha). Mine sites expanded 

by ~1,039 ha (+34.1%). These results clearly demonstrate that bare land and mining 

areas are expanding at the expense of natural vegetation and agriculture, consistent 

with regional findings in Betare-Oya, Ngoura, and Batouri (Kamga et al., 2020). 



LAND USE/LAND COVER DYNAMICS IN THE GAROUA-BOULAI ARTISANAL GOLD MINING DISTRICT, EAST 
REGION CAMEROON (2015–2024) USING SENTINEL-2 IMAGERY: A REMOTE SENSING & GIS APPROACH 

197 

Table 5. Transition matrix of LULC Change (2015–2020; 2020–2024; 2015–2024) 

Class name 
Dense 

Vegetation 
Agricultural 

Land 

Built-
Up 

Areas 

Water 
Bodies 

Bare land 
Mine 
Sites 

2020 

Dense 
Vegetation 

2015 

21115.28 8259.61 164.85 29.11 229.18 280.36 

Agricultural 
Land 

3758.41 83200.68 866.4 9.48 17267.68 1297.96 

Built-Up 
Areas 

14.31 508.41 979.3 2.96 469.32 286.35 

Water 
Bodies 

16.58 11.74 3.24 166.34 0.14 8.75 

Bare Land 7.24 4383.3 482.72 0.41 10880.82 714.03 

Mine Sites 117.3 1356.1 358.25 51.98 630.94 533.35 

 

2020 

2024 

Dense 
vegetation 

14823.58 9620.5 111 0.81 98.08 380.5 

Agricultural 
Land 

919.53 71672.02 
2330.5

7 
1.91 20511.34 2294.54 

Built-Up 
Areas 

7.09 496.1 
1489.6

1 
0.55 560.54 301.09 

Water 
Bodies 

5.1 22.69 4.7 115.28 0.29 112.43 

Bare Land 0.38 3358.32 
1298.7

2 
0.42 24305.36 517.99 

Mine Sites 4.67 572.67 895.9 6.53 1159.81 481.49 

 

2015 

2024 

Dense 
vegetation 

14024.43 14374.71 375.05 2.89 455.23 846.08 

Agricultural 
Land 

1698.18 68478.4 
2807.0

1 
2.17 31240.54 2174.31 

Built-Up 
Areas 

3.95 286.19 
1218.2

2 
0.25 608.26 143.78 

Water 
Bodies 

0.9 10.43 6.22 105.49 0.38 83.37 

Bare Land 1.89 1596.03 
1065.8

5 
0.06 13483.17 321.52 

Mine Sites 27.26 987.52 657.69 14.5 842.82 518.13 

Source: Own elaboration 

These maps as seen in Fig. 5, highlight the spatial distribution, intensity and 

direction of land cover change, complementing the statistical results presented on 

Table 5. 
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(a) (b) 

 
(c) 

Fig. 5. Change detection maps showing LULC transitions between (a) 2015–2020, 

(b) 2020–2024, (c) 2015–2024 

Source: Own elaboration 

Correlation and regression analysis. 

The statistical analysis provided further evidence of mining-driven land use change 

in the district. 

Correlation results. The Pearson correlation coefficients (Table 6) revealed 

systematic relationships among LULC classes. Mine sites were strongly and negatively 

correlated with dense vegetation (r = –0.957) and agricultural land (r = –0.932), 

confirming that mining expansion occurred largely at the expense of vegetation and 

agricultural land. In contrast, mine sites exhibited strong positive correlations with bare 

land (r = +0.928) and built-up areas (r = +0.997), highlighting their role in land 

degradation and settlement growth. 
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Table 6. Pearson correlation coefficient (r) between LULC classes (2015–2024) 

Variables Mine Sites 
Dense 

Vegetation 
Agricultural 

Land 
Built-Up 

Areas 
Water 
Bodies 

Bare land 

Mine Sites 1      

Dense 
Vegetation 

-0.957 1     

Agricultural 
Land 

-0.932 +0.995 1    

Built-Up 
Areas 

+0.997 -0.949 -0.986 1   

Water 
Bodies 

-0.896 +0.965 +0.998 -0.959 1  

Bare land +0.928 -0.999 -0.986 +0.968 -0.979 1 

Source: Own elaboration 

Water bodies also showed a notable negative correlation with mine sites 

(r = –0.896), consistent with field observations of riverbank disturbance and ponding in 

abandoned pits. Agricultural land and dense vegetation were almost perfectly correlated 

(r = +0.995), indicating their coupled trajectory of decline under mining and settlement 

pressure. 

Regression results. Simple linear regression was used to model the relationships 

between mine site expansion and other LULC classes (Fig. 6). Dense vegetation vs. mine 

sites: slope = –11.99; R2 = –0.92; each hectare of mining corresponded to ~12ha of 

vegetation loss (Fig. 6a). Agricultural land vs. mine sites: slope = –16.69; R2= –0.87; each 

hectare of mining corresponded to ~17ha of farmland loss (Fig. 6b). Bare land vs. mine 

sites: slope = 24.19; R2= 0.86; mining expansion coincided with rapid growth of 

degraded bare land (Fig. 6e). Built-up areas vs. mine sites: slope = 3.58; R2= 0.99; mining 

was almost perfectly correlated with settlement expansion, although the scale of land 

conversion was smaller than for vegetation or agriculture (Fig. 6c). These results 

confirm that mining is the dominant explanatory factor in land-cover dynamics, 

simultaneously driving vegetation and agricultural decline while amplifying bare land 

and settlement growth. 

The regression slopes reveal that mining does not merely occupy land directly but 

also exerts secondary degradation pressures on surrounding landscapes. For example, 

agricultural plots bordering mine sites are often abandoned due to soil disturbance or 

waterlogging, while vegetation adjacent to pits is cleared for fuelwood, camps, and 

informal settlements 

Due to limited temporal data points (n = 3), statistical significance was not achieved. 

However, the very high correlations (|r| > 0.90) and strong explanatory power (R2) 

indicates that mining expansion induces land degradation in Garoua-Boulai.  
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(a) (b) 

  
(c) (d) 

 
(e) 

Fig. 6. Regression plots showing the relationships between mine site expansion 

(independent variable) and (a) dense vegetation, (b) agricultural land, 

(c) built-Up areas, (d) water bodies, (e) bare land 

Source: Own elaboration 

The observed LULC dynamics in Garoua-Boulai mirror trends reported in other 

artisanal gold mining regions in sub-Saharan Africa, including Senegal (Ngom et al., 

2020), Tanzania (Lameck et al., 2025), and Peru’s Amazon (Caballero-Espejo et al., 

2018). In all cases, artisanal mining has been linked to accelerated deforestation, soil 

exposure, and settlement expansion. 

In Cameroon, however, research has largely focused on Betare-Oya, Ngoura, and 

Batouri, leaving Garoua-Boulai understudied. This study demonstrates that Garoua-
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Boulai is experiencing equally severe degradation, compounded by population growth, 

cross-border migration, and refugee inflows from the Central African Republic. 

The rapid conversion of vegetation and agricultural land to bare land and mining 

sites has profound implications for food security, biodiversity conservation, and water 

resources. Bare land expansion increases vulnerability to erosion and flooding, while 

agricultural decline undermines local livelihoods. Without intervention, these trends 

may exacerbate poverty and conflict over natural resources 

The observed dynamics can be attributed to multiple interlinked drivers: Expansion 

of artisanal gold mining pits and semi-mechanized operations, often unregulated; 

Refugee settlements (Gado-Badzere camp) and migration along the Douala–Bangui 

corridor intensify land demand; Clearing of vegetation for food production in response 

to population influx; Growth of built-up areas linked to cross-border trade and mining 

boomtown effects; Limited enforcement of mining rehabilitation and environmental 

protection policies. These drivers mirror patterns observed across artisanal mining 

districts in Africa, where socio-economic pressures compound environmental 

degradation (Donkor et al., 2006; Ferring & Hausermann, 2019) 

Conclusions 

This study assessed land use and land cover (LULC) dynamics in the Garoua-Boulai 

artisanal gold mining district of Cameroon between 2015 and 2024 using Sentinel-2 

imagery, supervised classification, accuracy assessment, post-classification change 

detection, and statistical analysis. The results revealed a progressive and accelerating 

transformation of the landscape from vegetation and agriculture dominated cover to one 

increasingly characterized by bare land, mining scars, and expanding settlements. 

Between 2015 and 2024, dense vegetation declined by nearly half (–47.6%), 

agricultural land decreased by ~19.4%, while bare land expanded by ~183%. Built-up 

areas nearly tripled, and mine sites grew by ~34%. These changes were validated by 

robust accuracy assessments (overall accuracies of 87–94% and Kappa values of 0.80–

0.87), underscoring the reliability of the results. Correlation and regression analyses 

provided strong statistical evidence that mining expansion is the principal driver of 

land-cover change. Mining exhibited strong negative correlations with vegetation and 

agriculture (r ≤ –0.93) and strong positive correlations with bare land and built-up areas 

(r ≥ +0.92). Regression slopes indicated that for every hectare of mining expansion, 

approximately 12–17 ha of vegetation and cropland were lost, while ~24 ha of bare land 

and ~3 ha of built-up areas were gained. Although only three temporal data points were 

available, limiting statistical significance, the strength of correlations (|r| > 0.90) and 

explanatory power (R2) provide compelling evidence of mining-driven land use change. 

The observed dynamics have profound environmental and socio-economic 

implications. Vegetation loss reduces biodiversity and carbon sequestration potential, 

while the decline in cropland threatens food security in a district already pressured by 

population growth and refugee inflows from the Central African Republic. The 

expansion of bare land increases vulnerability to erosion, sedimentation, and flooding, 
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and degraded soils limit prospects for agricultural recovery. Mining activities contribute 

to landscape fragmentation, water pollution, and health risks from mercury and 

sediment contamination. At the same time, settlement expansion linked to mining 

boomtown effects exacerbates land demand and resource conflicts. Collectively, these 

processes accelerate environmental degradation, undermine sustainable livelihoods, 

and challenge regional development goals. 

In the broader African and global context, the findings align with evidence from 

other artisanal gold mining regions, including Betare-Oya and Eseka in Cameroon, 

Senegal, Ghana, Tanzania, and the Peruvian Amazon. This consistency underscores that 

artisanal mining is a transnational environmental challenge with comparable ecological 

and social consequences across the tropics. 
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