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Abstract: This study examined land use/land cover (LULC) dynamics in the Garoua-
Boulai artisanal gold mining district, Cameroon, from 2015 to 2024 using Sentinel-2
imagery, GIS, and statistical analysis. Supervised classification (Maximum Likelihood,
ArcGIS 10.8) and accuracy assessment (overall accuracy 87-94%; Kappa 0.80-0.87)
revealed major land transformations. Dense vegetation declined by ~48% and
agricultural land by ~19%, while bare land expanded by 183%, built-up areas nearly
tripled, and mine sites increased by 34%.Correlation analysis showed strong negative
relationships between mine sites and vegetation (r = -0.957) and agriculture (r = -
0.932), and positive relationships with bare land (r = +0.928) and built-up areas (r =
+0.997). Regression slopes indicated that each hectare of mine expansion corresponded
to losses of ~12-17 ha of vegetation/agriculture and gains of ~24ha of bare land.
Although limited to three temporal data points, the high correlations and explanatory
power (R?) provide compelling evidence of mining-driven land change. These findings
highlight the urgent need for stronger regulation of artisanal mining, rehabilitation of
abandoned pits, and integration of remote sensing into land governance to support
sustainable land management in Cameroon’s mining districts.
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Introduction

Natural resources play a vital role in human survival, with land serving as the
foundation for terrestrial ecosystem services (Fang et al, 2022). However, mineral
resource exploitation, particularly artisanal and small-scale gold mining (ASGM), has
become one of the leading drivers of environmental degradation (Ahmad & Pandey,
2018). Mining activities such as excavation, trenching, and sediment reworking often
result in deforestation, soil instability, contamination of water bodies, and landscape
modifications (Sahu & Er, 2011; Mbaya, 2013; Marangoz et al., 2017). The removal of
overburden exposes arable land to erosion, while abandoned pits and unrehabilitated
mine sites exacerbate land degradation (Kamga et al., 2020). In addition, ASGM
frequently leads to flooding, sedimentation, and biodiversity loss (Gadal et al.,, 2021),
undermining both ecological and economic functions and threatening agricultural
sustainability (Basir et al., 2011).

Accurate information on the extent of land degradation caused by mining is
essential for policy development and environmental conservation. However, field-based
data collection for large areas is often limited, costly, and time-consuming (De Jong,
2015). Remote sensing techniques have therefore emerged as a powerful alternative,
offering rapid, cost-effective, and spatially comprehensive monitoring capabilities. In
particular, Sentinel-2 satellites under the Copernicus program provide medium-
resolution multispectral imagery that is well suited for monitoring short and long-term
environmental impacts of mining (Charou et al., 2010).

Globally, several studies have demonstrated the utility of remote sensing in
mapping the impacts of gold mining. For example, Caballero-Espejo et al. (2018) used
Landsat imagery in the Peruvian Amazon to quantify deforestation linked to ASGM,
reporting a dramatic rise in forest loss from 292 ha/year between 2003-2006 to 1,915
ha/year between 2006-2009. In Senegal, Ngom et al. (2020) applied Sentinel-2 and
Google Earth Engine to detect ASGM sites, while Lameck et al. (2025) integrated remote
sensing with social surveys in Tanzania’s Singida Region to assess land use/cover
changes and their socio-economic implications. These examples highlight how remote
sensing contributes to both environmental monitoring and sustainable land
management strategies.

In Cameroon, artisanal gold mining has also been associated with significant
environmental degradation across several regions. In the Centre Region, Lum-Ndob et al.
(2024) documented a sharp decline in forest cover in the Eseka mining district from
98% in 1990 to 34% in 2022, alongside increases in agricultural land and mining camps.
Similarly, Manga et al. (2018) reported extensive deforestation and bare land expansion
due to mining activities in the same region. In the Adamawa Region, Tchoua et al. (2024)
used Sentinel-2 imagery and photogrammetric analysis to show vegetation and soil
deterioration around Mbale, while in the North, Fuh et al. (2023) combined Landsat 8
OLI and Digital Elevation Model (DEM) data to monitor land cover changes associated
with mining in the Borongo-Mborguene gold field. Similarly, Mefomdjo et al. (2024)
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demonstrated large-scale vegetation loss, soil degradation, and water contamination
linked to artisanal mining across northern and eastern gold mining regions.

The East Region, particularly is one of the most affected artisanal gold mining zones.
Kamga et al. (2020) reported extensive adverse effects of ASGM on agriculture, health,
and education across Betaré-Oya, Ngoura, and Batouri between 1987 and 2017. More
recently, Tamfuh et al. (2024) used Sentinel-2 imagery to track land cover changes in
Bétaré-Oya between 2018 and 2022, finding rapid mining expansion at the expense of
vegetation cover, though a temporary decline occurred during the COVID-19 pandemic.

Despite this growing body of research, limited attention has been given to Garoua-
Boulai, another artisanal gold mining district in the East Region. Unlike well-studied
areas such as Betaré-Oya, Batouri, and Ngoura, the long-term land use and land cover
dynamics in Garoua-Boulai remain poorly understood. Yet, this district is experiencing
increasing artisanal mining activity, population influx, and settlement expansion, all of
which intensify land degradation pressures. Traditional field surveys for monitoring
these changes are often difficult due to terrain, cost, and time constraints (Ahmad &
Pandey, 2018), underscoring the need for a rapid and accurate remote sensing-based
approach.

This study therefore aims to assess land use and land cover (LULC) dynamics in the
Garoua-Boulai artisanal gold mining district between 2015 and 2024 using Sentinel-2
imagery. The specific objectives are to: (i) produce spatial maps of LULC patterns and
mining expansion, (ii) quantify transitional changes in LULC for the study period
associated with mining, and (iii) establish the relationship between mining activities and
land degradation in the district. The findings are expected to advance understanding of
ASGM impacts on land systems, contributing baseline knowledge that supports
sustainable development.

Material and methods

Description of study area.

Garoua-Boulai is located in the East Region of Cameroon in the Lom and Djerem
Division, covering about 2,214 km? (CityPopulation, 2025) and located between
5°25’0”N to 6°0°0”N and14°0°0” to 15°0’0”E (Fig. 1). Its location on the Douala-Bangui
transnational corridor makes it a strategic gateway for trade and migration across the
sub region (Humanitarian Data Exchange, 2025). Garoua-Boulai lies on the northeastern
margin of the Congo Basin, within a gently dissected plateau transitioning toward the
Adamawa highlands. The area belongs to the Lom-Kadey River system, with tributaries
originating on the eastern Adamawa Plateau and draining southward into gold-bearing
basins. These rivers sustain riparian gallery forests but are increasingly disturbed by
artisanal mining (Miles et al., 2006; BRGM, 2024).

The district has a tropical savanna climate characterized by a rainy season from
April to November and a dry season from December to March. Mean annual rainfall is
~1,500-2,000 mm, with average temperatures of 24-25 °C (Climate-Data.org, 2025). The
relatively high elevation (~1,030 m) results in cooler nights. Ecologically, Garoua-Boulai

187



Fon A. Zoum, Bechan L. Ndimungiang, Menge L. Assamba

belongs to the Northern Congolian forest-savanna mosaic ecoregion, dominated by
wooded savannas, semi-deciduous forest patches, and perennial grasses interspersed
with agricultural mosaics (WWF, 2025). The natural vegetation is progressively
fragmented by logging, smallholder farming, and artisanal gold mining.

The district lies within the Pan-African Central African Fold Belt, specifically the
Lom Series, and a Neoproterozoic volcano-sedimentary domain intruded by granitoids
and transected by gold-bearing shear zones (Vicat & Pouclet, 1995; Toteu et al., 2001).
Weathering of auriferous quartz veins supplies eluvial and alluvial gold to the Lom-
Kadey drainage network, which underpins widespread artisanal and semi-mechanized
gold mining (ASGM) in the East Region, including Garoua-Boulai, Betare-Oya, Ngoura,
and Batouri (BRGM, 2024).

Garoua-Boulai had about 41,000 inhabitants in 2005 (BUCREP, 2010), but recent
growth has been driven by cross-border trade and refugee inflows from the Central
African Republic (CAR). The nearby Gado-Badzere camp alone has hosted more than
27,000 refugees in recent years (UNHCR, 2023). Population growth, settlement
expansion, farming, logging, and ASGM have accelerated land-cover conversion,
intensifying environmental pressures.
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Fig. 1. Location map of study area

Source: Own elaboration
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The outline of materials and methods used for land use/land cover (LULC) dynamics
monitoring/mapping using Remote Sensing and GIS techniques are described in the
flowchart in Fig. 2.
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Fig. 2. Flow chart for LULC classification and change detection workflow
Source: Own elaboration

LULC classification, mapping and change dynamics.

Data source and image selection. Sentinel-2 Level-2A images were downloaded
from the Copernicus Data Space Ecosystem (https://dataspace.copernicus.eu/). To
maximize temporal comparability and reduce seasonal effects, scenes were selected for
December of 2015, 2020, and 2024, corresponding to the dry season in the East Region
of Cameroon when cloud cover is typically lower and vegetation phenology is relatively
stable as shown on Table 1. Sentinel-2 provides 13 spectral bands as seen on Table 2,
spanning the visible, near-infrared (NIR), and shortwave infrared (SWIR) regions at
native spatial resolutions of 10 m (B2, B3, B4, B8), 20 m (B5, B6, B7, B8A, B11, B12), and
60 m (B1, B9, B10). For each year, all available December scenes with minimal cloud
contamination over the area of interest (AOI) were screened using the metadata cloud
percentage and quick-look previews; scenes with evident cloud/shadow over the AOI
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were excluded. When multiple acceptable scenes were available within the month, they
were retained to enable masking and compositing steps that further suppress residual
cloud/shadow effects.

Table 1. Characteristics of Sentinel-2 images used for analysis

Year Satellite Date of image Time Phonological cycle
2015 Sentinel-2 Level 2A 16/12/2015 09:24:12 Dry Season
2020 Sentinel-2 Level 2A 24/12/2020 09:23:19 Dry Season
2024 Sentinel-2 Level 2A 18/12/2024 09:24:11 Dry Season

Source: Own elaboration

Table 2. Sentinel 2 bands characteristics

Sentinel L Central wavelength Bandwidth Spatial
2 bands Characteristics (nm) (nm) resolution (m)
1 Coastal aerosol 442.7 21 60
2 Blue 492.4 66 10
3 Green 559.8 36 10
4 Red 664.6 31 10
5 Vegetation red edge 740.5 15 20
6 Vegetation red edge 740.5 15 20
7 Vegetation red edge 782.8 20 20
8 NIR 832.8 106 10
8A Narrow NIR 864.7 21 20
9 Water vapour 945.1 20 60
10 SWIR - Cirrus 1373.5 31 60
11 SWIR 1613.7 91 20
12 SWIR 2202.4 175 20

Source: Copernicus Data Space Ecosystem, 2025

Pre-processing and image enhancement in SNAP. Image pre-processing was
performed in the Sentinel Application Platform (SNAP, ESA). Because Level-2A products
are already atmospherically corrected to Bottom-of-Atmosphere (BOA) surface
reflectance, the workflow focused on quality masking, geometric harmonization, and
spatial resampling. First, the Scene Classification Layer (SCL) provided with L2A (classes
for cloud, cloud shadow, vegetation, bare soils, water) and the QA60 mask were used to
flag clouds (SCL 8-10), shadows (SCL 3), and snow/ice (SCL 11), which were removed
from further processing. A small morphological dilation (1-2 pixels) was applied to the
cloud and shadow masks to eliminate edge contamination. All images were checked for
map projection consistency and reprojected to UTM Zone 33N (WGS-84) where
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necessary to ensure exact co-registration across years. Since Sentinel-2 bands are
provided at mixed spatial resolutions, all spectral bands required for classification were
resampled to 10m using bilinear interpolation (appropriate for continuous reflectance
data) to create a uniform multi-band stack per year. Prior to export, contrast stretching
and light histogram normalization were applied to enhance visual interpretability for
training-sample delineation.

Band compositing and AOI Extraction. The pre-processed multi-band stacks were
imported into ArcGIS Desktop 10.8 (ArcMap). A natural-color composite (Bands 4-3-2)
was used for on-screen interpretation and training-sample placement. The AOI was
extracted using the clip tool from the toolbox in ArcMap.

Class scheme and training data in ArcGIS Desktop 10.8. Six land-use/land-cover
classes were mapped based on local knowledge and visual interpretation: Dense
vegetation, Agricultural land, Built-up areas, Water bodies, Bare land, and Mining sites
(active pits, tailings, camps, and associated disturbed ground). To capture within-class
spectral variability, 150 training samples per class were digitized as polygons
distributed across the AOI, avoiding transitional edges and known mixed pixels
according to Sathya & Baby (2019).

Supervised classification and post-processing. Supervised classification was
carried out using the Maximum Likelihood Classifier (MLC) in ArcGIS, which assigns
pixels to the class with the highest posterior probability under the assumption of
multivariate normality of class signatures. The signature file generated from the curated
training set was used as the classifier input. Class boundaries were visually inspected
against the natural-color composite and high-resolution base map tiles; minor manual
edits were performed where obvious mislabels occurred.

Area and percentage calculations in ArcGIS 10.8. Area calculations for each year
were possible from the final classified raster’s summarized attribute tables. Given the 10
m output resolution, each pixel represents 100 m?, equivalent to 0.01 ha. Class area (ha)
was computed as:

Area (ha) = Pixel Count X 0.01 (D

And percentage cover was calculated by dividing class area by the total mapped area
and multiplying by 100.

Class Area

Percentage Cover = x 100 (2)

Total mapped area

For transparency and reproducibility, all area statistics were generated using the
same AOI mask for 2015, 2020, and 2024 to ensure identical denominators across years.

Accuracy assessment. Classification reliability was evaluated using a stratified
random sampling design. Independent reference points were generated per class
(50 points per class), yielding a validation set that was not used for training (Rwanga &
Ndambuki, 2017). Each reference point was interpreted against time-coincident high-
resolution imagery in Google Earth Pro (December windows #1-2 months when
necessary). A confusion matrix (error matrix) was then constructed for each year (2015,
2020, and 2024), from which the following standard accuracy metrics were derived:
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Producer’s Accuracy (PA) and User’s Accuracy (UA) for each class, Overall Accuracy
(OA), along with the Kappa coefficient to measure agreement beyond chance. The
interpretation of Kappa values followed Landis & Koch (1977), Kappa = 0.81 was treated
as almost perfect agreement, 0.61-0.80 as substantial, 0.41-0.60 as moderate, and values
< 0.40 as poor. Accuracy metrics were reported separately for 2015, 2020, and 2024.

Producer’s accuracy measures errors of omission, which is a measure of how well
real-world land cover types can be classified.

Number of Correctly Cassified Pixels in each Category

Producer's Accuracy = x 100 (3)

Total Number of Reference Pixels in that Category

User’s accuracy measures errors of commission, which represents the likelihood of a
classified pixel matching the land cover type of its corresponding real-world location.

Number of Correctly Classified Pixels in each Category
Number of Correctly classified Pixels in that Category

User's Accuracy = 100 (4)

Overall Accuracy is the proportion of correctly classified pixels across all classes
relative to the total number of validation samples.

Total Correctly classified Samples

Overall Accuracy = x 100 (5)

Total Reference Sample

Change detection. Post-classification comparison was used to detect land cover
transitions between 2015-2020, 2020-2024, and 2015-2024. The cross-tabulation
method allowed quantification of class-to-class conversions (e.g. dense vegetation to
bare land, bare land to mining site, dense vegetation to mining site etc.). This approach
minimizes radiometric inconsistencies by relying on classified maps rather than direct
image differencing. Transition matrices were generated to capture absolute area
changes (ha) between land-cover classes for the periods.

Correlation and regression.

To evaluate the statistical relationships between land-use/land-cover (LULC)
classes over time, a correlation and regression analysis was carried out using Microsoft
Excel 2013. The analysis was based on the area coverage (ha) of each LULC class (Dense
Vegetation, Agricultural Land, Built-up Areas, Water Bodies, Bare Land, and Mine Sites)
for the classification years 2015, 2020, and 2024.

Correlation. The Pearson Product-Moment Correlation Coefficient (r) was
computed to assess the strength and direction of linear associations between pairs of
LULC classes. This coefficient ranges from -1 (perfect negative correlation) to +1
(perfect positive correlation), with values close to 0 indicating weak or no linear
relationship. The formula applied in Excel was:

r= \/(zf)gix—lx;).(zi;iz)% (6)

Where “Xi” and “Yi” represent the observed values of two LULC classes, and “X” and
“Y” are their respective means. The resulting correlation matrix allowed identification of
inverse relationships (e.g., expansion of mining sites versus decline of dense
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vegetation/agriculture) and direct relationships (e.g.,, growth of bare land alongside
mining expansion).

Regression. In addition, simple linear regression was performed to model the
dependency of selected LULC classes on mining expansion. Specifically, mine site area
(independent variable, X) was regressed against dense vegetation, agricultural land, and
bare land (dependent variables, Y). The regression equation applied in Excel was:

Y =a+bX (7)

Where “Y” is the dependent variable (e.g., vegetation area), “X” is the independent
variable (mine sites), “a” is the intercept, “b” is the slope (regression coefficient). The
coefficient of determination (R2) was used to measure the proportion of variation in the
dependent variable explained by mining expansion. This analysis enabled quantification
of how strongly mining growth was associated with land degradation trends (loss of
vegetation and agriculture) and land conversion (increase in bare land and built-up
areas).

Results and discussion

Land use/Land cover classification results.

The classified maps of 2015, 2020, and 2024 revealed substantial changes in land
use and land cover (LULC) within the Garoua-Boulai artisanal gold mining district
(Fig. 3). The corresponding class areas and percentages are summarized in Table 3.

Table 3. LULC statistics in Garoua-Boulai (2015-2024)

Year Class Area (ha) Percentage (%)
Dense vegetation 30085.13 18.98
Agricultural Land 106416.1 67.15
2015 Built-Up Areas 2262.2 1.43
Water Bodies 207.69 0.13
Bare Land 16474.76 10.40
Mine Sites 3049.47 1.92
Dense vegetation 25034.47 15.80
Agricultural Land 97729.91 61.67
2020 Built-Up Areas 2854.98 1.80
Water Bodies 260.49 0.16
Bare Land 29481.19 18.60
Mine Sites 3121.07 1.97
Dense Vegetation 15760.35 9.94
Agriculture Land 85742.3 54.10
2024 Built-up Areas 6130.5 3.87
Water Bodies 125.5 0.08
Bare Land 46635.42 29.43
Mine Sites 4088.04 2.58

Source: Own elaboration
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Fig. 3. LULC classified maps for Garoua-Boulai (a) 2015, (b) 2020, (c) 2024

Source: Own elaboration

In 2015, agricultural land dominated the landscape (106,416.1 ha; 67.15%),
followed by dense vegetation (30,085.1 ha; 18.98%) and bare land (16,474.8 ha;
10.40%). Built-up areas, mining sites, and water bodies were relatively minor,
accounting for less than 2% each (see Fig. 3a).

By 2020, agricultural land had declined to 97,729.9 ha (61.67%), and dense
vegetation decreased to 25,034.5 ha (15.80%). Meanwhile, bare land increased sharply
to 29,481.2 ha (18.60%), while mining sites showed a slight increase to 3,121.1 ha
(1.97%), see Fig. 3b.

The 2024 classification shows accelerated land transformation, with agricultural
land dropping to 85,742.3 ha (54.10%) and dense vegetation declining further to
15,760.4 ha (9.94%). Bare land expanded dramatically to 46,635.4 ha (29.43%), nearly
tripling its 2015 extent. Built-up areas doubled from 2,262.2 ha (2015) to 6,130.5 ha
(2024), while mine sites grew to 4,088.0 ha (2.58%). Water bodies remained minimal
(<0.2%) throughout the study period (see Fig. 3c).
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Fig. 4. Trend in LULC in Garoua-Boulai from 2015 to 2024
Source: Own elaboration

Figure 4, indicate a clear trajectory of land degradation, marked by the replacement
of vegetation and agricultural land with bare land, built-up areas, and mining sites in
2024. The findings align with previous studies in Betare-Oya, East region, Cameron
(Kamga et al, 2020; Tamfuh et al, 2024), which reported vegetation loss and
agricultural decline due to artisanal mining expansion.

Accuracy assessment results.

The classification reliability was evaluated using independent validation samples
and confusion matrices (Table 4). Overall accuracies improved across the three
classification years: 87.69% (2015), 89.23% (2020), and 93.85% (2024). The Kappa
coefficients were 0.80, 0.81, and 0.87, respectively, indicating substantial to almost
perfect agreement according to Landis and Koch (1977).

Producer’s and User’s accuracies varied by class. For example, mine sites had
relatively low User’s Accuracy in 2015 (50%) and 2020 (50%), reflecting spectral
confusion with bare land and agricultural fields. However, accuracy improved
significantly by 2024 (100%). Dense vegetation and agricultural land consistently
showed high accuracies, reinforcing the reliability of mapped patterns.

The progressively higher accuracy over time demonstrates the robustness of the

classification procedure and validates the subsequent change detection and statistical
analyses.
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Table 4. Accuracy assessment of LULC classifications (2015-2024)

Class Name | User’s Accuracy (%) | Producer’s Accuracy (%)
2015
Dense Vegetation 100 54
Agricultural Land 87 97
Built-Up Areas 60 100
Water Bodies 100 67
Bare Land 100 86
Mine Sites 50 75
Overall Accuracy 87.69%
Kappa Coefficient (Kc) 0.80
2020
Dense Vegetation 95 81
Agricultural Land 92 95
Built-Up Areas 50 100
Water Bodies 100 100
Bare Land 86 71
Mine Sites 50 100
Overall Accuracy 89.23
Kappa Coefficient (Kc) 0.81
2024
Dense Vegetation 100 86
Agricultural Land 94 98
Built-Up Areas 60 100
Water Bodies 100 100
Bare Land 95 83
Mine Sites 100 100
Overall Accuracy 93.85
Kappa Coefficient (Kc) 0.87

Source: Own elaboration

Change detection analysis.

Post-classification comparison was used to quantify land-cover transitions (Table 5).

From 2015 to 2020, dense vegetation declined by ~5,051 ha, largely converted into
agriculture (3,758 ha) and bare land (4,383 ha). Agricultural land decreased by ~8,686
ha, with major conversions to bare land (17,268 ha) and mining sites (1,298 ha). Bare
land expanded by ~13,006 ha, largely at the expense of vegetation and agriculture.

The period between 2020 and 2024, dense vegetation lost ~9,274 ha, mainly
transitioning into bare land (24,305 ha) and agriculture (7,672 ha). Agricultural land
decreased further by ~12,000 ha, with significant conversions into bare land (20,511
ha) and mining sites (2,295 ha). Bare land gained ~17,154 ha, confirming accelerated
degradation. Built-up areas expanded rapidly (+3,276 ha).

For the overall change transition (2015-2024): Dense vegetation declined by
~14,325 ha (-47.6%). Agricultural land lost ~20,674 ha (-19.4%). Bare land increased
by ~30,161 ha (+183%). Built-up areas nearly tripled (+3,868 ha). Mine sites expanded
by ~1,039 ha (+34.1%). These results clearly demonstrate that bare land and mining
areas are expanding at the expense of natural vegetation and agriculture, consistent
with regional findings in Betare-Oya, Ngoura, and Batouri (Kamga et al., 2020).
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Table 5. Transition matrix of LULC Change (2015-2020; 2020-2024; 2015-2024)

Dense Agricultural B[ljllt- Water Bare land Mine
Class name Vegetation Land P Bodies Sites
Areas
2020
Dense 21115.28 8259.61 164.85 | 29.11 | 229.18 | 280.36
Vegetation
Agrf;;g“ral 3758.41 83200.68 866.4 | 9.48 | 17267.68 | 1297.96
Built-Up
Arens 2015 1431 508.41 979.3 | 2.96 46932 | 28635
Water 16.58 11.74 324 | 166.34 0.14 8.75
Bodies
Bare Land 7.24 43833 48272 | 041 | 10880.82 | 714.03
Mine Sites 117.3 1356.1 358.25 | 51.98 | 63094 | 533.35
2024
Dense 14823.58 9620.5 111 0.81 98.08 380.5
Vegetatlon
Agricultural 919.53 7167202 | 23305 1 191 | 2051134 | 2294.54
Land 7
Buil-Up | 55 7.09 496.1 14896 | 55 | 56054 | 301.09
Areas 1
Water 5.1 22.69 47 | 11528 0.29 112.43
Bodies
Bare Land 0.38 3358.32 1238'7 042 | 2430536 | 517.99
Mine Sites 4.67 572.67 8959 | 653 | 1159.81 | 481.49
2024
Dense 14024.43 1437471 | 375.05 | 2.89 45523 | 846.08
vegetation
Agricultural 1698.18 68478.4 2807.0 | 517 | 3124054 | 217431
Land 1
Built-Up 2015 3.95 286.19 12182 | 95 608.26 | 143.78
Areas 2
Water 0.9 10.43 6.22 | 105.49 0.38 83.37
Bodies
Bare Land 1.89 1596.03 1025'8 0.06 | 13483.17 | 321.52
Mine Sites 27.26 987.52 657.69 | 14.5 842.82 | 518.13

Source: Own elaboration

These maps as seen in Fig. 5, highlight the spatial distribution, intensity and
direction of land cover change, complementing the statistical results presented on
Table 5.
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Fig. 5. Change detection maps showing LULC transitions between (a) 2015-2020,
(b) 2020-2024, (c) 2015-2024

Source: Own elaboration

Correlation and regression analysis.

The statistical analysis provided further evidence of mining-driven land use change
in the district.

Correlation results. The Pearson correlation coefficients (Table 6) revealed
systematic relationships among LULC classes. Mine sites were strongly and negatively
correlated with dense vegetation (r = -0.957) and agricultural land (r = -0.932),
confirming that mining expansion occurred largely at the expense of vegetation and
agricultural land. In contrast, mine sites exhibited strong positive correlations with bare
land (r = +0.928) and built-up areas (r = +0.997), highlighting their role in land
degradation and settlement growth.
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Table 6. Pearson correlation coefficient (r) between LULC classes (2015-2024)

. : . Dense Agricultural | Built-Up Water
Variables Mine Sites Vegetation Land Areas Bodies Bare land
Mine Sites 1

Dense
Vegetation -0.957 1
Agricultural -0.932 +0.995 1
Land
Built-Up +0.997 -0.949 -0.986 1
Areas
Water -0.896 +0.965 +0.998 -0.959 1
Bodies
Bare land +0.928 -0.999 -0.986 +0.968 -0.979 1

Source: Own elaboration

Water bodies also showed a notable negative correlation with mine sites
(r = -0.896), consistent with field observations of riverbank disturbance and ponding in
abandoned pits. Agricultural land and dense vegetation were almost perfectly correlated
(r = +0.995), indicating their coupled trajectory of decline under mining and settlement
pressure.

Regression results. Simple linear regression was used to model the relationships
between mine site expansion and other LULC classes (Fig. 6). Dense vegetation vs. mine
sites: slope = -11.99; R?Z = -0.92; each hectare of mining corresponded to ~12ha of
vegetation loss (Fig. 6a). Agricultural land vs. mine sites: slope = -16.69; R2= -0.87; each
hectare of mining corresponded to ~17ha of farmland loss (Fig. 6b). Bare land vs. mine
sites: slope = 24.19; R2?= 0.86; mining expansion coincided with rapid growth of
degraded bare land (Fig. 6e). Built-up areas vs. mine sites: slope = 3.58; R2= 0.99; mining
was almost perfectly correlated with settlement expansion, although the scale of land
conversion was smaller than for vegetation or agriculture (Fig. 6c). These results
confirm that mining is the dominant explanatory factor in land-cover dynamics,
simultaneously driving vegetation and agricultural decline while amplifying bare land
and settlement growth.

The regression slopes reveal that mining does not merely occupy land directly but
also exerts secondary degradation pressures on surrounding landscapes. For example,
agricultural plots bordering mine sites are often abandoned due to soil disturbance or
waterlogging, while vegetation adjacent to pits is cleared for fuelwood, camps, and
informal settlements

Due to limited temporal data points (n = 3), statistical significance was not achieved.
However, the very high correlations (|r| > 0.90) and strong explanatory power (R?)
indicates that mining expansion induces land degradation in Garoua-Boulai.
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Fig. 6. Regression plots showing the relationships between mine site expansion

(independent variable) and (a) dense vegetation, (b) agricultural land,
(c) built-Up areas, (d) water bodies, (e) bare land

Source: Own elaboration

The observed LULC dynamics in Garoua-Boulai mirror trends reported in other
artisanal gold mining regions in sub-Saharan Africa, including Senegal (Ngom et al,,
2020), Tanzania (Lameck et al, 2025), and Peru’s Amazon (Caballero-Espejo et al,
2018). In all cases, artisanal mining has been linked to accelerated deforestation, soil
exposure, and settlement expansion.

In Cameroon, however, research has largely focused on Betare-Oya, Ngoura, and
Batouri, leaving Garoua-Boulai understudied. This study demonstrates that Garoua-
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Boulai is experiencing equally severe degradation, compounded by population growth,
cross-border migration, and refugee inflows from the Central African Republic.

The rapid conversion of vegetation and agricultural land to bare land and mining
sites has profound implications for food security, biodiversity conservation, and water
resources. Bare land expansion increases vulnerability to erosion and flooding, while
agricultural decline undermines local livelihoods. Without intervention, these trends
may exacerbate poverty and conflict over natural resources

The observed dynamics can be attributed to multiple interlinked drivers: Expansion
of artisanal gold mining pits and semi-mechanized operations, often unregulated;
Refugee settlements (Gado-Badzere camp) and migration along the Douala-Bangui
corridor intensify land demand; Clearing of vegetation for food production in response
to population influx; Growth of built-up areas linked to cross-border trade and mining
boomtown effects; Limited enforcement of mining rehabilitation and environmental
protection policies. These drivers mirror patterns observed across artisanal mining
districts in Africa, where socio-economic pressures compound environmental
degradation (Donkor et al., 2006; Ferring & Hausermann, 2019)

Conclusions

This study assessed land use and land cover (LULC) dynamics in the Garoua-Boulai
artisanal gold mining district of Cameroon between 2015 and 2024 using Sentinel-2
imagery, supervised classification, accuracy assessment, post-classification change
detection, and statistical analysis. The results revealed a progressive and accelerating
transformation of the landscape from vegetation and agriculture dominated cover to one
increasingly characterized by bare land, mining scars, and expanding settlements.

Between 2015 and 2024, dense vegetation declined by nearly half (-47.6%),
agricultural land decreased by ~19.4%, while bare land expanded by ~183%. Built-up
areas nearly tripled, and mine sites grew by ~34%. These changes were validated by
robust accuracy assessments (overall accuracies of 87-94% and Kappa values of 0.80-
0.87), underscoring the reliability of the results. Correlation and regression analyses
provided strong statistical evidence that mining expansion is the principal driver of
land-cover change. Mining exhibited strong negative correlations with vegetation and
agriculture (r < -0.93) and strong positive correlations with bare land and built-up areas
(r 2 +0.92). Regression slopes indicated that for every hectare of mining expansion,
approximately 12-17 ha of vegetation and cropland were lost, while ~24 ha of bare land
and ~3 ha of built-up areas were gained. Although only three temporal data points were
available, limiting statistical significance, the strength of correlations (|r| > 0.90) and
explanatory power (R?) provide compelling evidence of mining-driven land use change.

The observed dynamics have profound environmental and socio-economic
implications. Vegetation loss reduces biodiversity and carbon sequestration potential,
while the decline in cropland threatens food security in a district already pressured by
population growth and refugee inflows from the Central African Republic. The
expansion of bare land increases vulnerability to erosion, sedimentation, and flooding,
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and degraded soils limit prospects for agricultural recovery. Mining activities contribute
to landscape fragmentation, water pollution, and health risks from mercury and
sediment contamination. At the same time, settlement expansion linked to mining
boomtown effects exacerbates land demand and resource conflicts. Collectively, these
processes accelerate environmental degradation, undermine sustainable livelihoods,
and challenge regional development goals.

In the broader African and global context, the findings align with evidence from
other artisanal gold mining regions, including Betare-Oya and Eseka in Cameroon,
Senegal, Ghana, Tanzania, and the Peruvian Amazon. This consistency underscores that
artisanal mining is a transnational environmental challenge with comparable ecological
and social consequences across the tropics.

References

Ahmad N., Pandey P. (2018). Assessment and Monitoring Of Land Degradation Using
Geospatial Technology In Bathinda District, Punjab, India Centre for Environmental
Sciences and Technology, Central University of Punjab, Bathinda, Punjab-151001,
India. Solid Earth, 9, 75-90.

Basir C.M., Hasanah U., Nur ., Serikawa Y. (2011). Gold Mining Activities and Its Impacts
on Land Degradation in Central Sulawesi Indonesia. Journal of Ecotechnology
Research, 16(4):79-83.

BRGM (2024). Gold Potential of the Lom and Kadey Basins, East Cameroon. Mining and
Geology Research Unit, Yaounde.

BUCREP (2010). Third general population and housing census. Central office for census
and population studies, Yaounde.

Caballero-Espejo ]J.,, Messinger M., Roman-Danobeytia F., Ascorra C., Fernandez L.E,
Silman M. (2018). Deforestation and forest degradation due to gold mining in the
Peruvian Amazon: A 34-year perspective. Remote Sensing, 10(12), 1903.
https://doi.org/10.3390/rs10121903.

Charou E., Stefouli M., Dimitrakopoulos D., Vasiliou E. Mavrantza O. (2010). Using
Remote Sensing to Assess Impact of Mining Activities on Land and Water Resources.
International Journal of Mine Water, 29(1):45-52.

CityPopulation (2025). Garoua-Boula (lom and Djerem, Division, Cameroon)-Population
Statistics. https://www.citypopulation.de/en/cameroon [access: 20.08.2025].

Climate-Data.org. (2025). Climate: Garoua-Boulai, Cameroon. https://en.climate-
data.org [access: 20.08.2025].

Copernicus Data space Ecosystem. https://dataspace.corpenicus.eu/explore-data/data-
collections/sentinel-data/sentinel-2 [access: 18.08.2025].

De Jong M.S,, Freek D., Van der M,, Jan G.P.W. (2015). Remote Sensing Image Analysis:
Including the Spatial Domain. Springer, 1-15.

Fang Z., Ding T., Chen |, Xue S., Zhou Q., Wang Y., Huang Z., Yang S. (2022). Impacts of
Land Use/Land Cover Changes on Ecosystem Services in Ecologically Fragile

202



LAND USE/LAND COVER DYNAMICS IN THE GAROUA-BOULAI ARTISANAL GOLD MINING DISTRICT, EAST
REGION CAMEROON (2015-2024) USING SENTINEL-2 IMAGERY: A REMOTE SENSING & GIS APPROACH

Regions. Science of the Total Environment, 831, article ID: 154967.
https://doi.org/10.1016/j.scitotenv.2022.154967.

Fuh F.T., Tchoua M.T., Tchamba M.N. (2023). Integrating multispectral remote sensing
and geological investigations for gold prospecting in the Borongo-Mborguene gold
field, Eastern Cameroon. Science of the Total Environment, 850, 157-163.

Gadal S., Gerard P., Gbetkom A., Mfondoum H.N. (2021). A new soil degradation method
analysis by Sentinel-2 images combining spectral indices and statistics analysis:
application to the Cameroonian shores of Lake Chad and its hinterland. 7t
International Conference on Geographical Information Systems Theory, Applications
and Management, pp. 25-36.

Humanitarian Data Exchange (2025). Cameroon - Administrative Boundaries. United
Nations OCHA. https://data.humdata.org [accessed 20.08.2025].

Kamga M.A. Nguemhe F.S.C,, Ayodele M.O., Olatubara Ch.O. Nzali S. Adenikinju A,
Khalifa M. (2020). Evaluation of land use/land cover changes due to gold mining
activities from 1987 to 2017 using Landsat imagery, East Cameroon. GeoJournal, 85,
1097-1114. https://doi.org/10.1007/s10708-019-10067-8.

Lameck A.S., Rotich B, Czimber K. (2025). Land use and land cover changes due to gold
mining in the Singida region, central Tanzania: Environmental and socio-economic
implications. Environmental Monitoring and Assessment, 197(4), 1-15.
https://doi.org/10.1007/s10661-025-13921-x.

Lum-Ndob S., Ambo F., Neba A., Ateh LK, Tata E., Suh C.E. (2024). Land use and land
cover dynamics in the Eseka alluvial gold mining district, Centre Region, Cameroon.
Journal of Geographic Information System, 16(4), 289-305.
https://doi.org/10.4236/jgis.2024.164018.

Manga E., Kamga A., Nguimfack M. (2018). Spatial Assessment of Impacts of Artisanal
and Small-scale Mining on Land Use/Land Cover Changes in the Centre Region of
Cameroon. African Journal of Environmental Science and Technology, 12(4),
123-135.

Marangoz A.M., Sekertekin A., Akc¢in H. (2017). Analysis of land use land cover
classification results derived from sentinel-2 image. Proceedings of the 17t
International Multidisciplinary Scientific GeoConference in Surveying Geology and
Mining Ecology Management, pp. 25-32.

Mbaya R.P. (2013). Land Degradation Due To Mining: The Gunda Scenario. International
Journal of Geography and Geology, 2(12):144-158.

Mefomdjo F.B.M., Dairou A.A., Juscar N., Romarice O.M.F., Arsene M., Tchuikoua L.B,,
Ngueyep L.M. (2024). Assessment of land cover degradation due to mining activities
using remote sensing and digital photogrammetry. Environmental Systems
Research, 13(1), 41. https://doi.org/10.1186/s40068-024-00372-5.

Miles L., Newton A.C., DeFries R.S,, et al. (2006). A global overview of the conservation
status of tropical dry forests. Journal of Biogeography, 33, 491-505.

Ngom N.M., Mbaye M., Baratoux D., Catry T., Dessay N., Faye G., Sow E.H., Delaitre E.
(2020). Mapping artisanal and small-scale gold mining in Senegal using Sentinel 2
Data. GeoHealth, 4, e2020GH000310. https://doi.org/10.1029/2020GH000310.

203



Fon A. Zoum, Bechan L. Ndimungiang, Menge L. Assamba

Rwanga S. Ndambuki ]. (2017). Accuracy Assessment of Land Use/Land Cover
Classification Using Remote Sensing and GIS. International Journal of Geosciences, 8,
1-5.

Sahu H.B, Er S.D. (2011). Land Degradation due to Mining in India
and its  Mitigation @ Measures. 2nd International  Conference on
Environmental Science and Technology, pp. 2-20.

Sathya P., Baby V. (2019) Classification Process of Satellite Images. International Journal
of Computer Application, 9 (1):2250-1797.

Tamfuh A.P.,, Ndah, M.E.,, Nguemhe F.S.C, Ateh K.I. Aye A.B., Tata E., Mamdem L.E,
Kenzong B., Kouankap N.G.D. Bitom D. (2024). Mapping land use/land cover
changes caused by mining activities from 2018 to 2022 using Sentinel-2 imagery in
Betare-Oya (East Cameroon). Journal of Geosciences and Geomatics, 12(1), 12-23.
https://doi.org/10.12691/jgg-12-1-3

Tchoua M.T., Tchamba M.N., Tchoua M.T. (2024). Assessment of land cover degradation
due to mining activities using remote sensing in Mbale, Northern Cameroon.
Environmental Systems Research, 13(1), 1-15. https://doi.org/10.1186/s40068-
024-00372-5

Toteu S.F.,, Van Schmus W.R,, Penaye J., Nyobé ].B. (2001). U-Pb and Sm-Nd evidence for
Eburnean and Pan-African high-grade metamorphism in the Yaounde Group,
Cameroon. Precambrian Research, 108, 45-73.

UNHCR (2023). Cameroon: Gado-Badzéré Refugee Camp Factsheet. United Nations High
Commissioner for Refugees.

Vicat ].P., Pouclet A. (1995). The Neoproterozoic Pan-African belt of Cameroon:
A lithostratigraphic, structural and geodynamic review. Journal of African Earth
Sciences, 21(3):173-189.

WWF (2025). Northern Congolian Forest-Savanna Mosaic. World Wildlife Fund
Ecoregions Database. https://www.worldwildlife.org/ecoregions/at0723 [access:
20.08.2025].

204



