
 2025 • Volume 5 • Number 2

https://doi.org/10.57599/gisoj.2025.5.2.5

5

Kazimierz Worwa1

ORGANIZATIONAL AND TECHNOLOGICAL PROBLEMS
OF THE GIS SOFTWARE TESTING

Abstract: The testing stage, creating great opportunities to verify and shape software

reliability, significantly increases the cost of its production. The effectiveness of the work

related to testing, expressed by the interdependence of the level of program product

reliability and the cost of testing it, strongly depends on the adopted testing strategy,

specifying the organization and scope of the work performed.

The paper attempts to present a general description of the software testing process

complex software systems such as GIS systems, with particular emphasis on the

organizational and technological problems associated with the implementation of this

process. The paper contains a description of the organization of the GIS software testing

process and a description of the technological aspects of its implementation.

Keywords: software testing, software quality, software engineering, initial testing,

advanced testing

Received: 19 May 2025; accepted: 21 June 2025

© 2025 Authors. This is an open access publication, which can be used, distributed and

reproduced in any medium according to the Creative Commons CC-BY 4.0 License.

1 Military University of Technology, Faculty of Cybernetics, Warsaw, Poland, ORCID ID:
https://orcid.org/0000-0002-8153-958X, email: kazimierz.worwa@wat.edu.pl

Kazimierz Worwa

6

Introduction

Despite the constant development and improvement of design and implementation

methods used in the practice of GIS system software production, their current level still

does not provide a full guarantee of creating a complex software product completely free

of errors. These errors, detected after a shorter or longer period of software use, expose

the user to specific losses, depending on the nature and purpose of this software. The need

to detect errors made during the implementation of individual stages of the software

production process as early as possible and to prevent the migration of errors to

subsequent stages of this process, forces the organization of periodic assessments of the

correctness of the obtained results. In software engineering practice, such assessments

are performed as part of verification and validation. The essence of verification is the

analysis and assessment of the results of the implementation of individual design and

implementation projects, which make up the software development cycle, performed on

the basis of documentation of the work carried out. Software engineering practice

distinguishes two forms of verification: review and inspection. A common feature of these

forms of verification is the performance of group analysis and assessment. They differ in

the purposes of the assessments and the degree of formalization of the organizational and

implementation procedures used. Validation is the process of assessing a system or its

component, which is in the final phase of its development cycle, in order to determine

whether the requirements specified in the requirements specification have been met.

Considering the current state of development of software engineering methods, such an

assessment is most often made based on the results of running the assessed software for

a specific set of input data sets and comparing them with the expected results. Such

validation of a software product is therefore possible only when it reaches the stage of

computer executability. Software validation is carried out in practice through its testing.

The verification and validation processes are complementary. Although they are carried

out using different methods and in different places of the software development process,

they have the same main goal: to detect errors made in earlier stages and phases of this

process. Verification enables the detection of errors in the early stages of the software

production cycle. Properly organized and carried out, it can be an effective means of

preventing the migration of errors to subsequent phases and stages of this cycle.

Validation enables the detection of errors in software that is usually at an advanced stage

of its production process. Given that most errors are made in the initial stages of the

software production cycle (Kit, 1995; Roman, 2015), removing errors detected at this

stage often requires changes to the software design or even the requirements

specification. In this situation, it is obvious that the cost of removing errors detected as a

result of validation procedures, i.e. testing, is usually much higher than the cost of

removing errors detected earlier, e.g. as part of project verification. However, it should be

clearly emphasized that the aforementioned high cost of removing errors detected in the

final phase of the software production process is usually a much lesser evil (also in terms

of cost) than their disclosure at the stage of software use. The results of the study of the

effectiveness of detecting errors made at various stages of the software development

ORGANIZATIONAL AND TECHNOLOGICAL PROBLEMS OF THE GIS SOFTWARE TESTING

7

cycle, confirmed by practice, show that only about 20% of all errors detected in the entire

cycle are revealed by verification methods, while about 80% of these errors are detected

as a result of the testing stage (Kit, 1995; Roman, 2015). The given proportions clearly

illustrate the importance of testing in the process of ensuring the required level of

reliability of the produced software. The basic goal of program testing is to detect and

remove as many errors made during the implementation of earlier stages of the

production process as possible (IEEE Std 829-2008, 2008; ISO/IEC/IEEE 29119-3:2021,

2021). Detecting and removing a certain number of errors contributes to increasing the

program's reliability. The number of detected errors strongly depends on the scope,

accuracy and organization of the testing work. The practice of software production shows

that this work is very time-consuming and requires high financial outlays. This results,

among other things, in the testing stage being characterized by a very significant share in

the overall cost of program production. In the case of a large and complex software

system, the cost of testing can constitute 40-70% of the total cost of its production (Pham,

2006). Software engineering practice clearly indicates that the testing stage plays a very

significant role in shaping the level of software quality of IT systems. Due to the fact that

the basic form of verification of the achievement of the expected level of quality by the

software being produced is the process of its testing, the issue of testing has a relatively

rich literature, both domestic and international, within which selected problems are taken

up regarding the organization and technology of implementing individual stages of this

process. Representative examples of publications in this area can be works (Craig, 2002;

Myers et al., 2004; Ammann & Offutt, 2017; Kit, 1995; Pham, 2006; Wiszniewski & Bereza-

Jarociński, 2009; Roman, 2015; Pressman 2018). The implementation of the software

testing stage, including GIS system software, is a multi-stage and labor-intensive

undertaking. It is therefore obvious that the successful implementation of the testing

stage, especially in relation to complex software systems, requires proper preparation

and logistical support, similarly to the implementation of complex technical undertakings.

Planning the testing process requires, in particular, determining the organization of work

that makes up the testing stage and the method of generating the used set of test data sets

(tests) and its size. Decisions made during testing process planning have a fundamental

impact on the time and cost of this process.

The aim of this article is to present a general description of the GIS software testing

process, with particular emphasis on the organizational and technological problems

associated with the implementation of this process. The remaining part of the work

contains a description of the organization of the GIS software testing process and

a description of the technological aspects of its implementation.

Material and methods

Organization of the GIS system software testing process. The basic goal of

software testing is to detect errors made in earlier stages of its development cycle, causing

incorrect behavior of the software, i.e. inconsistent with the requirements specification.

The essence of software testing is:

Kazimierz Worwa

8

‒ multiple execution of the software for a prepared set of test data, which is usually

a specific subset of all possible sets of input data,

‒ evaluation of the results of execution of the tested software for individual sets of data,

by comparing the obtained results with the expected ones,

‒ identification of the causes of the software behavior inconsistent with expectations

and localization and removal of errors.

The process of testing a complex software system is usually a multi-stage

undertaking. Depending on the internal structure and purpose of the software being

tested, this process may include (Kit, 1995; Craig, 2002; Myers et al., 2004; Pressman, 2018):

1) initial testing:

− individual testing,

− integration testing;

2) advanced testing:

− usability testing,

− function testing,

− system testing,

− acceptance testing.

Initial testing. Initial testing of a software system is performed in relation to its

individual components or groups of components, created by their specific combination.

In software engineering practice, these components are most often modules, which are

fragments of larger structures, e.g. programs, which can constitute independent design

and implementation tasks. Initial testing requires a thorough knowledge of the internal

structure of the tested software, including the so-called module logic, and is therefore

most often performed by the design and implementation team itself. The principle that

a programmer should not test his own module or program should be observed. The

essence of testing is to find errors in the software, while psychological conditions make it

very difficult for most programmers to adopt a destructive attitude towards the results of

their own, often several months, work. Good results, on the other hand, are achieved by

entrusting the testing of a specific module to the author of the module cooperating with

the tested module, e.g. the author of the module invoking the tested module. Individual

testing is usually the first stage of the testing process. It consists of autonomous testing of

individual program components, i.e. performed in isolation from other components. The

main goal of individual testing is to detect all possible errors that cause the tested

component to behave differently than the one assumed, i.e. specified in the requirements

specification. Testing a specific component in isolation from the rest of the program,

including without other components cooperating with it, may require the use of:

‒ a control module, the main task of which is to call, i.e. initiate execution, with a specific

set of input data and collect (print, record) the results of the tested component's

operation;

‒ mock-ups of modules that simulate the operation (functions) of components that the

tested component calls during its operation; in the case where the tested component

is a so-called terminal component, i.e. does not call other components, mock-ups of

other components are not needed for its testing.

ORGANIZATIONAL AND TECHNOLOGICAL PROBLEMS OF THE GIS SOFTWARE TESTING

9

Integration testing. Integration testing is a process of planned connection (merging)

of isolated components of the software product under consideration and testing of such

created groups of these components. The main goal of integration testing is to detect and

remove errors in interfaces (couplings) between components. In practice, depending on

the type and structure of the software product being produced, the integration testing

process may include several integration levels.

Integration testing, carried out within each integration level, may be a multi-stage

process, with the number of these stages depending on the number of components

integrated at a given level and the method of combining them into component groups

subject to testing. Depending on the method of combining (integrating) individual

components, integration testing may proceed in an incremental or non-incremental

manner.

Incremental integration testing consists in successive testing of a group of

components, expanded in a specified manner, until the entire tested software product is

obtained, whereby the expansion of the component group consists in adding a new

component to the previously created and tested group. Depending on the order of testing

components and the way they are combined into groups, in practice, the following are

distinguished:

‒ bottom-up testing,

‒ top-down testing.

Bottom-up testing involves combining and testing components from the bottom up.

The testing process begins with individual testing of terminal components, i.e. those that

do not call other components. Then, components that directly call them are added to

individual terminal components, after which the groups of components created in this

way are tested. Adding components from the next, higher levels of their hierarchy and

testing the group of components expanded in this way ends after adding and testing the

last, i.e. the highest-positioned, component. Bottom-up testing of each of the component

groups created in this process requires the use of special control modules, replacing the

missing, i.e. not yet added, parent components in the tested group. The main task of the

control module is to pass subsequent sets of input data to the tested group of components.

Of course, as the bottom-up testing process progresses, the artificial control modules are

replaced by real components that take over their functions. The need to prepare and use

these control modules can significantly impact the duration and cost of the integration

testing process, which is a disadvantage of bottom-up testing.

Top-down testing involves combining and testing individual components in a top-

down direction. The procedure begins with testing the component occupying the highest

(peak) position in the hierarchy of isolated components. After testing the top component,

the components directly called by it (from lower levels of the hierarchy) are added to it,

and then the testing process of the group created in this way is repeated. This process

continues until all components, including terminal components, are added and tested.

A comparison of both presented methods of incremental integration testing allows us to

see their mutual advantages and disadvantages. The main advantage of top-down testing

is the possibility of obtaining an early, albeit skeleton, but working version of the tested

Kazimierz Worwa

10

software product. This allows for appropriately early implementation of subsequent

testing stages, e.g. testing usability or software functions. One of the disadvantages of top-

down testing results from the need to use, often expensive, mockups of missing

components. Another disadvantage is the inability to test the added components

sufficiently thoroughly. This is because this testing is carried out through a layer of

components added earlier. In practice, such a situation may mean the need for prior,

individual testing of all or some components. Bottom-up testing usually does not provide

the possibility of obtaining a working skeleton of the entire software product early on,

which is its main disadvantage. Another disadvantage of this method is the need to use

control modules that enable testing. An undoubted advantage of bottom-up testing is the

possibility of thoroughly testing the internal logic of the added components, which often

allows for their prior individual testing to be omitted. In practice, incremental integration

testing is carried out using methods that are a specific combination of top-down and

bottom-up testing, aimed at discounting the advantages of both methods and eliminating

their disadvantages. The simultaneous use of top-down and bottom-up testing leads to

mixed testing and consists in combining the integration processes from the top and

bottom, until they "meet" in the middle of the structure created by the separated

components. The meeting point, depending on the structure of the tested software, should

be determined before starting integration testing. Mixed testing is used in large and

complex software systems. Non-incremental integration testing involves the

simultaneous integration of all isolated components and further testing of the entire

software. This requires prior, individual testing of each component. This method,

compared to incremental integration testing methods, has a number of serious

disadvantages. These disadvantages result primarily from very limited possibilities of

testing the connections between individual components. However, it is most often used

in practice, which is mainly due to its simplicity. This method can be useful in the case of

testing small programs with a low-complexity modular structure.

Advanced testing. Advanced testing involves testing the entire, complete software

product in order to assess the compliance of its use conditions, the degree of

implementation of the required functions and its behavior with the requirements

specified in the requirements specification. In order to ensure full objectivity of the testing

process, interpretation of the obtained results and assessments formulated on their basis,

advanced testing should be carried out by a team independent of the team that created

the software in question. Software engineering practice distinguishes four stages of

advanced testing:

‒ software usability testing,

‒ software function testing,

‒ system testing,

‒ acceptance testing.

Assessing the compliance of the software's behavior with the requirements specified

in the requirements specification, including user requirements, is the main goal of

usability testing. The results of software usability testing should, among other things,

enable the assessment of:

ORGANIZATIONAL AND TECHNOLOGICAL PROBLEMS OF THE GIS SOFTWARE TESTING

11

‒ the availability of individual software functions,

‒ the method of entering input data and sharing the results of software operation,

‒ the ease of using the software by the user,

‒ the ease of learning how to properly use the software by the user,

‒ the completeness and availability of the help system.

The basic goal of software function testing is to assess the compliance of the

software's behavior, within the scope of all the functions it performs, with the

requirements specification. Software function testing therefore focuses on assessing the

correctness and accuracy of the results of the implementation of individual functions

performed by the tested software. The essence of testing a specific software function is to

repeatedly run the software using sets of input data, which cause the activation of this

function, i.e. activation of the software components that perform it. The laboriousness and

time-consuming nature of the process of testing a specific software function strongly

depends on its type, the scope of its input data domain and its complexity. Achieving the

goals set for software function testing depends to a decisive degree on the proper design

and preparation of the test data set, based on which the testing is performed.

The goal of system testing is to assess the compliance of the behavior of complete,

fully integrated software, in operating conditions similar to the conditions of its actual

use, with the requirements and goals specified in the requirements specification. Software

engineering practice shows that system testing is both the most difficult stage of testing

to implement and the one that raises the most misunderstandings about its goals and

essence (Kit, 1995). System testing should be carried out based on a set of test data

created based on a deep understanding of the conditions, circumstances and ways of using

the software, i.e. from the point of view of its user or client. System testing is used to assess

the behavior of the entire software system, including the degree of implementation of the

assumed goals, as well as any required user documentation. Unlike the earlier stages of

testing, the test data sets used in the system testing process rarely concern the invocation

of a single software function. This data usually takes the form of scenarios describing

specific sequences of operations performed by the software system being tested.

In the process of assessing the compliance of the actual and assumed behavior of the

software system, which is the essence of system testing, the following aspects of this

behavior should be taken into account:

‒ responding to so-called overloads, resulting from short-term, high load of the tested

software system, resulting from, for example, a large number of transactions reported

for service in a short period of time in the banking system, from a large number of

reports appearing simultaneously in the seat reservation system, from the

appearance of a large number of signals requiring immediate response in the system

controlling the technological process, etc.;

‒ responding to large amounts of input data, constituting a long-term load on the tested

system;

‒ the level of data protection and security, including in particular the effectiveness of

software data protection mechanisms, preventing, for example, access to specific data

and programs by unauthorized persons;

Kazimierz Worwa

12

‒ system efficiency, defining the results of the system's work in categories such as

throughput, efficiency, response time, time of handling a single report, etc.;

‒ the level of resource consumption required to ensure proper software operation,

including in particular the occupancy of RAM and external memories, the occupancy

of external devices used, etc.;

‒ hardware and software compatibility with the immediate environment;

‒ response to failures or unexpected behavior of elements of the hardware used,

cooperating software systems or specific components of the software being tested;

‒ correctness of the required diagnostic software, including memory content analysis

programs and tracking programs, which are a tool supporting the software

maintenance process, e.g. facilitating the location and removal of errors that may

occur during the operational use of the software;

‒ correctness and ease of implementation of software installation procedures in the

actual work environment;

‒ completeness and substantive level of the required operational and maintenance

documentation;

‒ compliance of the reliability indicator values specified in the requirements

specification with the actual values of these indicators; although the assessment of

this aspect of the software system operation in system testing conditions may be

difficult (e.g. how to check whether the mean time between failures is 2000 hours?),

it cannot be omitted.

Acceptance testing is the last stage of the software testing process. Its purpose is to

assess the compliance of the software system's behavior in the actual conditions of its

operational use with the requirements specified in the requirements specification.

Acceptance testing is performed by the user, most often in the form of trial operation,

lasting a fixed period of time specified in the requirements specification. Conclusions

resulting from the use of the software system during its trial operation are the basis for

assessing whether the results of its work are consistent with the expectations expressed

in the requirements specification.

Software testing process technology. The implementation of each of the software

testing stages listed in the previous section requires:

‒ defining a testing plan,

‒ designing and preparing a test data set,

‒ developing testing procedures that specify the list and method of performing the

activities required to perform testing using the separated test data sets,

‒ performing testing, i.e. launching the tested software product (module, group of

modules, program, group of programs, software system) for each data set from the

test data set,

‒ evaluating the testing results by comparing the expected and actual results of

executing the tested software product for each test data set,

‒ locating and removing any detected errors.

Planning the testing process. Ensuring high efficiency of the software testing

process requires a methodical, engineering approach to its implementation. This requires

ORGANIZATIONAL AND TECHNOLOGICAL PROBLEMS OF THE GIS SOFTWARE TESTING

13

accurate and realistic planning of the implementation of this process, the result of which

is a test plan.

According to IEEE Std 829-2008 (2008) or ISO/IEC/IEEE 29119-3:2021 (2021), a test

plan is a document defining the subject, goals and tasks of testing, the scope and method

of testing, the means and tools required to secure its implementation and the schedule for

the implementation of individual projects that make up the testing process. Due to the

complex, multi-stage organization of the testing process, planning this process usually

also consists of several stages. In practice, planning the implementation of the software

testing process includes the preparation of (IEEE Std 1012-2004, 2005):

‒ a master test plan, defining the goals and tasks of the entire testing process of the

software in question, identifying the stages of this process and defining the scope and

method of their implementation;

‒ a separate test plan for each stage of the testing process, separated in the master plan.

The master test plan, defining the organization of the entire software testing process,

taking into account the component stages of this process, should include (IEEE Std 829-

2008, 2008; ISO/IEC/IEEE 29119-3:2021, 2021):

‒ definition of tasks (including stages) and objectives of the testing process;

‒ description of methods and identification of procedures for the implementation of

each of the separate tasks, in order to achieve the assumed testing objective;

‒ characteristics of input data and conditions required for the correct implementation

of each of the separate tasks of the testing process and output data resulting from the

implementation of these tasks;

‒ schedule for the implementation of individual tasks of the testing process, specifying

their start and end dates;

‒ definition of needs in terms of the executive team, hardware and software

architecture, specialist tools, etc., required for the proper implementation of

individual testing tasks;

‒ identification and description of possible difficulties and threats that may occur

during the implementation of individual tasks of the testing process, together with

a description of the proposed actions that will be required in the event of the

occurrence of such difficulties or threats;

‒ description of the organizational aspects of the implementation of individual testing

tasks, including the definition of responsibility for the results of their implementation.

In software engineering practice, the master test plan is usually part of the software

verification and validation plan, the layout and content of which are specified by the

standard (IEEE Std 1012-2004, 2005). The software verification and validation plan

defines all activities related to the verification of the correctness of the implementation of

individual stages of the software development cycle and the phases that make them up,

including the implementation of the software testing process. The activities included in

the software verification and validation plan are focused on:

‒ the earliest possible detection and removal of errors made in individual stages of the

software development cycle;

‒ reducing the risk of exceeding the planned time and financial outlays;

Kazimierz Worwa

14

‒ improving the level of software quality, including increasing its reliability;

‒ increasing the effectiveness of managing the implementation of the entire software

development process.

The software verification and validation plan is one of the documents specified by the

software quality assurance plan, the execution of which − in accordance with the standard

(IEEE Std 1012-2004, 2005) − is mandatory in the production process of the so-called

responsible software. The software quality assurance plan is the highest (in the hierarchy

of planning documents related to the software production process) plan, containing direct

references to the software testing process. It contains a description of all activities, used

standards, measures and indicators, as well as tools and means for achieving the required

level of quality by the produced software. The layout and content of the software quality

assurance plan are specified by the standard (IEEE Std 1012-2004, 2005). In accordance

with the requirements specified by this standard, the remaining mandatory documents

are: software requirements specification, software project description, software

verification and validation plan implementation report and user documentation.

The execution of a software quality assurance plan, in accordance with the

requirements specified by the standard (IEEE Std 730.1-1995, 1995), is mandatory for

responsible software and recommended for other software.

According to the previous comments, the scope and method of implementation of

each of the separate stages of the testing process are determined by test plans, prepared

separately for each stage. Recommendations regarding the layout and content of such

a plan are included in the standard (IEEE Std 829-2008, 2008; ISO/IEC/IEEE 29119-

3:2021, 2012). According to this standard, the test plan should specify:

‒ the subject of testing, being a specific subset of the components of the software being

produced, with an indication of the required – as input data – documents, including

requirements specifications, design specifications and user documentation (in the

scope concerning the subject of testing);

‒ the purpose of testing, with an indication of the detailed characteristics and

properties of the tested software, subject to verification and evaluation;

‒ the method of testing, with particular consideration of the activities, methods and

tools required to verify and evaluate the indicated characteristics and properties of

the tested software;

‒ criteria for completing testing, describing the conditions that must be met in order to

consider testing as completed;

‒ criteria and method for assessing the results of running the tested software for

individual test data sets;

‒ a list of detailed tasks, so-called testing tasks, the execution of which is required for

the proper preparation and implementation of the testing process;

‒ a list of documents that should be the result of the preparation and implementation

of the testing process;

‒ detailed needs in terms of computer hardware and software required to secure the

implementation of the testing process and the conditions of its use, taking into

account, among others, data protection conditions;

ORGANIZATIONAL AND TECHNOLOGICAL PROBLEMS OF THE GIS SOFTWARE TESTING

15

‒ organization and composition of the team performing the testing, taking into account

the division of competences and responsibilities;

‒ a schedule for the implementation of the testing process, the construction of which

must take into account the start and end dates of individual testing stages, included

in the main testing plan;

‒ possible difficulties and obstacles that may occur during the implementation of

individual tasks of the testing process, with a description of the proposed actions and

remedies.

Results and discussion

Research results. In accordance with the previous remarks, the significance of the

software testing stage in the process of ensuring a high level of its reliability is very high.

This results, among others, from the fact confirmed by practice that as many as approx.

80% of all errors made in the entire software development cycle are detected as a result

of the testing stage (Kit, 1995, Roman, 2015). The considerations presented clearly

indicate that the implementation of the software testing process is a complex, multi-stage,

time-consuming and labor-intensive undertaking. This problem is particularly important

in relation to complex software systems, such as GIS system software. Successful

implementation of the testing process of such software systems requires proper

preparation and logistical security, with particular emphasis on proper planning of this

process, including determining the organization of work that makes up the testing stage

and the method of generating the used set of test data sets (tests) and determining its size.

Decisions made during the planning of the testing process have a fundamental impact on

the time and cost of this process.

Testing practice shows that testing efficiency can be increased by, among others:

‒ using appropriate tools and means to support the implementation of the software

testing process,

‒ using standards,

‒ properly documenting the implementation of the work carried out.

Using appropriate tools to support the implementation of the software testing

process makes this process easier and more effective. Using these tools is currently an

important element of testing technology. The growing importance and popularization of

the practice of using tools to support the implementation of the software testing process

occurred as one of the direct consequences of the constantly expanding area of application

of computer systems and the accompanying increase in quality and reliability

requirements for their software. Computer-aided implementation of the software testing

process, and especially automation of this process, enables, among others:

‒ increasing the number of detected errors, by ensuring greater systematicity in the

implementation of the adopted testing plan,

‒ shortening the duration of the testing process and reducing its cost, by minimizing

the number of test data sets used, while ensuring the implementation of the assumed

testing goals.

Kazimierz Worwa

16

In software engineering practice, many different computer-aided software testing

(CAST) tools are used, which are used in different phases of this process. These tools

support:

‒ planning the testing process,

‒ designing test data sets,

‒ executing the tested software for subsequent test data sets and evaluating the results

of these executions.

The means and tools for computer-aided design of the test data set constitute the

most promising group of tools for increasing the effectiveness of the testing process.

Within this group of means and tools, we can distinguish:

‒ automatic test execution systems,

‒ test effectiveness analyzers,

‒ tracking programs,

‒ hardware and software simulators.

The basic problem that must be solved at the stage of planning and preparing the

software testing process is to determine such a subset of all possible input data sets that

would maximize the probability of detecting all errors made in the earlier stages of the

software development process. This problem arises due to the fact that, in general – due

to the duration and cost of the testing process – it is impossible to test software based on

the entire set of all possible sets of input data. The problem of determining the

aforementioned subset is the problem of designing a set of test data (tests). Each test is

an acceptable combination of values that can be assumed by the input variables of the

tested software product, required for its single launch, whereby input variables are

variables whose values are determined directly on the basis of the input data, e.g. as

a result of executing the data loading instruction. The method of creating a set of test data,

based on which the software testing process will be carried out, depends on the adopted

testing method, each of which is based on a specific criterion for selecting test data sets.

In addition to the method of selecting individual test data sets, the numbers of test sets

used in individual stages of the testing process are of decisive importance for the testing

results and the amount of time and money incurred during it.

Discussion of the results. Among the implementation phases of each stage of the

testing process, the most important – due to its impact on the course and results of the

work carried out – is the test data set design phase. The test data set, which is the basis

for the implementation of the testing process, determines the degree to which the

assumed goals are achieved, the course of the work carried out, and the duration and cost

of testing. Due to the existence of significant differences in defining the detailed testing

goals for the individual stages of the testing process, the design of the test data set for the

implementation of these stages can be carried out using methods based on both the

functional design philosophy and the structural design philosophy. Based on practical

experience, general suggestions can be made regarding the usefulness of functional and

structural design for defining test data sets used in the individual stages of the software

testing process. From these experiences, particularly good results are achieved by using:

ORGANIZATIONAL AND TECHNOLOGICAL PROBLEMS OF THE GIS SOFTWARE TESTING

17

‒ structural design methods to determine test data sets for individual testing,

‒ functional and structural design methods to determine test data sets for integration

testing,

‒ functional design methods to determine test data sets for usability and software

function testing, system testing and acceptance testing.

Proper determination of the test data set has a very significant impact on the

effectiveness of each stage of the software testing process, with this effectiveness being

determined by the degree of achievement of the assumed goals and the level of time and

financial outlays incurred.

It is worth emphasizing that the basic goal of software testing, which is to detect as

many errors as possible, made during the implementation of earlier stages of the software

production cycle, is achieved in practice under conditions of limited time and financial

outlays. In the process of planning and implementing the testing process, solutions must

therefore be preferred that ensure the implementation of the intended goals with the least

amount of time allocated for testing and at the lowest possible cost. This is achieved

through consistent use of recognized standards, as well as the use of appropriate

computer-aided tools for the implementation of the testing process. The greatest impact

on the amount of time and financial outlays incurred in the process of implementing each

testing stage, distinguished in the plan, is the size of the test data set used. It should be

emphasized that the form and content of the test data set is in practice a certain

compromise between the need to confirm that the tested software has achieved the

required level of reliability (from this point of view, the number of tests should be as large

as possible) and the need to minimize the amount of time and financial outlays incurred

(from this point of view, the number of tests should be as small as possible).

Conclusions

The article presents the characteristics of the GIS system software testing process.

The characteristics of the software testing process are presented as a complex, multi-

stage undertaking, the successful implementation of which, in particular with regard to

complex software systems like GIS systems, is conditioned by its proper planning and

management. The basic stages of the testing process are characterized, with particular

emphasis on the methods of designing a set of test cases. The presented characteristics of

the testing process emphasize the role and importance of its proper logistical support,

which allows for a significant increase in the effectiveness of the work carried out in this

area, especially in terms of the duration and cost of its implementation.

It follows from the presented considerations that the software testing stage, closing

its production cycle, creates the last opportunity to detect design and program errors that

were made during the implementation of earlier stages of this cycle. The implementation

of the software testing stage, in particular with regard to complex software systems such

as GIS systems, is a multi-stage and labor-intensive undertaking. It was emphasized that

the successful implementation of the testing stage, especially in relation to complex

software systems, requires proper preparation, planning, monitoring of implementation

Kazimierz Worwa

18

and ensuring appropriate logistical security. The proper course of the software testing

process is conditioned by its proper management. Due to the fact that testing is one of the

stages (along with defining requirements, designing and programming) of the software

development process, the method of managing the implementation of the testing stage

depends on the adopted method of managing the entire software development process,

while the practice of modern software engineering shows that in relation to large projects,

highly formalized management methodologies are most often used, including primarily

the RUP methodology, while for medium and smaller projects, agile methodologies are

increasingly used, e.g. the XP methodology. Management of the software development

process, both in relation to highly formalized methodologies and agile methodologies,

covers such areas as: human resources management, financial management, time

management, knowledge management, relationship management, including in particular

customer relationship management, incident management, quality management and risk

management.

Acknowledgements

This work was financed/co-financed by Military University of Technology under research

project UGB 531-000023-W500-22.

References

Ammann P., Offutt J. (2017). Introduction to software testing. Cambridge University Press.

Craig R.D. (2002). Systematic Software Testing. Artech House.

IEEE Std 829-2008 (2008). IEEE Standard for Software and System Test Documentation.

ISO/IEC/IEEE 29119-3:2021 (2021). Software and systems engineering − Software

testing. Part 3: Test documentation.

IEEE Std 1012-2004 (2005). IEEE Standard for Software Verification and Validation Plans.

Kit E. (1995). Software Testing in Real Word. Improving the Process. Addison−Wesley.

Myers G.J., Sandler C., Bagdett T., Thomas T.M. (2004) The art of software testing. Wiley.

Pham H. (2006). System software reliability. Springer.

Pressman R.S. (2018). Software engineering: a practitioner’s approach. McGraw−Hill,

New York.

Roman A. (2015). Software testing and quality. Models, techniques, tools. PWN, Warsaw.

Wiszniewski B., Bereza-Jarociński B. (2009). Teoria i praktyka testowania programów

(Theory and practice of program testing). PWN, Warsaw.

